Rota's universal operators and invariant subspaces in Hilbert spaces
Data(s) |
2016
|
---|---|
Resumo |
A Hilbert space operator is called universal (in the sense of Rota) if every operator on the Hilbert space is similar to a multiple of the restriction of the universal operator to one of its invariant subspaces. We exhibit an analytic Toeplitz operator whose adjoint is universal in the sense of Rota and commutes with a quasi-nilpotent injective compact operator with dense range. In particular, this new universal operator invites an approach to the Invariant Subspace Problem that uses properties of operators that commute with the universal operator. |
Formato |
application/pdf |
Identificador | |
Idioma(s) |
en |
Publicador |
Academic Press Inc |
Relação |
http://eprints.ucm.es/39918/ http://www.sciencedirect.com/science/article/pii/S0022123616301252 http://dx.doi.org/10.1016/j.jfa.2016.05.018 MTM2010-16679 MTM2013-42105-P |
Direitos |
info:eu-repo/semantics/restrictedAccess |
Palavras-Chave | #Análisis funcional y teoría de operadores |
Tipo |
info:eu-repo/semantics/article PeerReviewed |