Rota's universal operators and invariant subspaces in Hilbert spaces


Autoria(s): Cowen, Carl C.; Gallardo Gutiérrez, Eva A.
Data(s)

2016

Resumo

A Hilbert space operator is called universal (in the sense of Rota) if every operator on the Hilbert space is similar to a multiple of the restriction of the universal operator to one of its invariant subspaces. We exhibit an analytic Toeplitz operator whose adjoint is universal in the sense of Rota and commutes with a quasi-nilpotent injective compact operator with dense range. In particular, this new universal operator invites an approach to the Invariant Subspace Problem that uses properties of operators that commute with the universal operator.

Formato

application/pdf

Identificador

http://eprints.ucm.es/39918/1/Gallardo29.pdf

Idioma(s)

en

Publicador

Academic Press Inc

Relação

http://eprints.ucm.es/39918/

http://www.sciencedirect.com/science/article/pii/S0022123616301252

http://dx.doi.org/10.1016/j.jfa.2016.05.018

MTM2010-16679

MTM2013-42105-P

Direitos

info:eu-repo/semantics/restrictedAccess

Palavras-Chave #Análisis funcional y teoría de operadores
Tipo

info:eu-repo/semantics/article

PeerReviewed