915 resultados para quantum-size effect


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Electroluminescence (EL) from AlInGaN-InGaN multiquantum-well violet light-emitting diodes is investigated as a function of forward bias. Two distinct regimes have been identified: 1) quantum-confined Stark effect at low and moderately high forward biases; 2) heating effect at high biases. In the different regimes, the low-temperature EL spectra exhibit different spectral features which are discussed in detail.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have investigated the intersubband absorption for spatially ordered and non-ordered quantum dots (QDs). It is found that the intersubband absorption of spatially ordered QDs is much stronger than that of non-ordered QDs. The enhanced absorption is attributed to the improved size uniformity concurrent with the spatial ordering for the growth condition employed. For the FTIR measurement under normal incidence geometry, using a undoped sample as reference can remove the interference effect due to multiple reflections. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The atomistic pseudopotential quantum mechanical calculations for million atom nanosized metal-oxide-semiconductor field-effect transistors (MOSFETs) are presented. When compared with semiclassical Thomas-Fermi simulation results, there are significant differences in I-V curve, electron threshold voltage, and gate capacitance. In many aspects, the quantum mechanical effects exacerbate the problems encountered during device minimization, and it also presents different mechanisms in controlling the behaviors of a nanometer device than the classical one. (c) 2007 American Institute of Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Low indium content InGaN/AlGaN multiple quantum wells (MQWs) have been grown on Si(111) substrate by metal-organic chemical vapour deposition (MOCVD). A new method of using an isoelectronic indium-doped AlGaN barrier has been found to be very effective in improving the crystalline quality and interfacial abruptness of InGaN quantum well layers. We grew five periods of In0.06Ga0.94N/Al0.20Ga0.80N:In MQWs with In-doped barrier layers and obtained strong near-ultraviolet (UV) emission (similar to 400 nm) at room temperature. An In-doped AlGaN barrier improves the room-temperature PL intensity of InGaN/AlGaN MQWs, making it a candidate barrier for a near-UV source on Si substrate.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effects of growth temperature on the bimodal size distribution of InAs quantum dots on vicinal GaAs(100) substrates grown by metal organic chemical vapor deposition are studied. An abnormal trend of the bimodal size evolution on temperature is observed. With the increase of the growth temperature, while the density of the large dots decreases continually, that of the small dots first grows larger when temperature was below 520 degrees C, and then exhibits a sudden decrease at 535 degrees C. The trend is explained by taking into account the presence of multiatomic steps on the substrates. Photoluminescence (PL) studies show that quantum dots on vicinal substrates have a narrower PL linewidth, a longer emission wavelength, and a larger PL intensity than those of the dots with exact substrates. (c) 2006 American Institute of Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A systematic investigation is made on the influence of the longitudinal and transverse period distributions of quantum dots on the elastic strain field. The results showed that the effects of the longitudinal period and transverse period on the strain field are just opposite along the direction of center-axis of the quantum dots, and under proper conditions, both effects can be eliminated. The results demonstrate that in calculating the effect of the strain field on the electronic structure, one must take into account the quantum dots period distribution, and it is inadequate to use the isolated quantum dot model in simulating the strain field.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Time-resolved light-current curves, spectra, and far-field distributions of ridge structure InGaN multiple quantum well laser diodes grown on sapphire substrate are measured with a temporal resolution of 0.1 ns under a pulsed current condition. Results show that the thermal lensing effect clearly improves the confinement of the higher order modes. The thermal lens leads to a lower threshold current for the higher order modes, a higher slope efficiency, and a change in the lasing mode of the device. The threshold current for the higher modes decreases by about 5 mA in every 10 ns in a pulse, and the slope efficiency increases by 7.5 times on the average when higher modes lase. (c) 2006 American Institute of Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The nonradiative recombination effect on carrier dynamics in GaInNAs/GaAs quantum wells is studied by time-resolved photoluminescence (TRPL) and polarization-dependent TRPL at various excitation intensities. It is found that both recombination dynamics and spin relaxation dynamics strongly depend on the excitation intensity. Under moderate excitation intensities the PL decay curves exhibit unusual non-exponential behaviour. This result is well stimulated by a rate equation involving both the radiative and non-radiative recombinations via the introduction of a new parameter of the effective concentration of nonradiative recombination centres in the rate equation. In the spin dynamics study, the spin relaxation also shows strong excitation power dependence. Under the high excitation power an increase of spin polarization degree with time is observed. This new finding provides a useful hint that the spin process can be controlled by excitation power in GaInNAs systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Using the Huang-Zhu model [K. Huang and B.-F. Zhu, Phys. Rev. B 38, 13377 (1988)] for the optical phonons and associated carrier-phonon interactions in semiconductor superlattices, the effects of longitudinal electric field on the energy-loss rates (ELRs) of hot carriers as well as on the hot-phonon effect (HPE) in GaAs/AlAs quantum wells (QWs) are studied systematically. Contributions of various bulklike and interface phonons to the hot-carrier relaxation are compared in detail, and comprehensively analyzed in relation to the intrasubband and intersubband scatterings for quantum cascade lasers. Due to the broken parity of the electron (hole) states in the electric field, the bulklike modes with antisymmetric potentials are allowed in the intrasubband relaxation processes, as well as the modes with symmetric potentials. As the interface phonon scattering is strong only in narrow wells, in which the electric field affects the electron (hole) states little, the ELRs of hot carriers through the interface phonon scattering are not sensitive to the electric field. The HPE on the hot-carrier relaxation process in the medium and wide wells is reduced by the electric field. The influence of the electric field on the hot-phonon effect in quantum cascade lasers is negligible. When the HPE is ignored, the ELRs of hot electrons in wide QWs are decreased noticeably by the electric field, but slightly increased by the field when considering the HPE. In contrast with the electrons, the ELRs of hot holes in wide wells are increased by the field, irrespective of the HPE. (c) 2006 American Institute of Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Performing an event-based continuous kinetic Monte Carlo simulation, we investigate the modulated effect induced by the dislocation on the substrate to the growth of semiconductor quantum dots (QDs). The relative positions between the QDs and the dislocations are studied. The stress effects to the growth of the QDs are considered in simulation. The simulation results are compared with the experiment and the agreement between them indicates that this simulation is useful to study the growth mode and the atomic kinetics during the growth of the semiconductor QDs. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We grow InGaAs quantum dot (QD) at low growth rate with 70 times insertion of growth interruption in MBE system. It is found that because of the extreme growth condition, QDs exhibit a thick wetting layer, large QD height value and special surface morphology which is attributed to the enhanced adatom surface diffusion and In-segregation effect. Temperature dependence of photoluminescence measurement from surface QD shows that this kind of QD has good thermal stability which is explained in terms of the presence of surface oxide. The special distribution of QD may also play a role in this thermal character. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have studied the exciton states of vertically stacked self-assembled quantum disks within the effective mass approximation. The ground energies of a heavy-hole and a light-hole excitons as functions of the vertical disk separation are presented and discussed. The transition energy of a heavy-hole ground-state exciton is calculated and compared with the experimental data. The binding energies are discussed in terms of the probability of ground wave function. The ground energies of a heavy-hole and a light-hole excitons as functions of the applied axial magnetic field are calculated and the effect of disk size (radius of disks) on exciton energies is discussed. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Self-assembled InAs quantum dots (QDs) are grown on vicinal GaAs (100) substrates by using metal-organic chemical vapour deposition (MOCVD). An abnormal temperature dependence of bimodal size distribution of InAs quantum dots is found. As the temperature increases, the density of the small dots grows larger while the density of the large dots turns smaller, which is contrary to the evolution of QDs on exact GaAs (100) substrates. This trend is explained by taking into account the presence of multiatomic steps on the substrates. The optical properties of InAs QDs on vicinal GaAs(100) substrates are also studied by photoluminescence (PL). It is found that dots on a vicinal substrate have a longer emission wavelength, a narrower PL line width and a much larger PL intensity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A GaAs/AlGaAs two-dimensional electron gas (2 DEG) structure with the high mobility of mu(2K) = 1.78 x 10(6) cm(2)/Vs has been studied by low-temperature Hall and Shubnikov de Hass (SdH) measurements. Quantum lifetimes related to all-angle scattering events reduced from 0.64 ps to 0.52 ps after illuminating by Dingle plots, and transport lifetimes related to large-angle scattering events increasing from 42.3 ps to 67.8 ps. These results show that small-angle scattering events become stronger. It is clear that small-angle scattering events can cause the variation of the widths of the quantum Hall plateaus.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The influence of nonradiative recombination on the photoluminescence (PL) decay dynamics in GaInNAs/GaAs quantum wells is studied by time-resolved photoluminescence under various excitation intensities. It is found that the PL decay process strongly depends on the excitation intensity. In particular, under the moderate excitation levels the PL decay curves exhibit unusual nonexponential behavior and show a convex shape. By introducing a new parameter of the effective concentration of nonradiative recombination centers into a rate equation, the observed results are well simulated. The cw PL data further demonstrate the nonradiative recombination effect on the optical properties of GaInNAs/GaAs quantum wells. (c) 2006 American Institute of Physics.