996 resultados para BCS theory
Resumo:
Background Excessive speed is a primary contributing factor to young novice road trauma, including intentional and unintentional speeds above posted limits or too fast for conditions. The objective of this research was to conduct a systematic review of recent investigations into novice drivers’ speed selection, with particular attention to applications and limitations of theory and methodology. Method Systematic searches of peer-reviewed and grey literature were conducted during September 2014. Abstract reviews identified 71 references potentially meeting selection criteria of investigations since the year 2000 into factors that influence (directly or indirectly) actual speed (i.e., behaviour or performance) of young (age <25 years) and/or novice (recently-licensed) drivers. Results Full paper reviews resulted in 30 final references: 15 focused on intentional speeding and 15 on broader speed selection investigations. Both sets identified a range of individual (e.g., beliefs, personality) and social (e.g., peer, adult) influences, were predominantly theory-driven and applied cross-sectional designs. Intentional speed investigations largely utilised self-reports while other investigations more often included actual driving (simulated or ‘real world’). The latter also identified cognitive workload and external environment influences, as well as targeted interventions. Discussion and implications Applications of theory have shifted the novice speed-related literature beyond a simplistic focus on intentional speeding as human error. The potential to develop a ‘grand theory’ of intentional speeding emerged and to fill gaps to understand broader speed selection influences. This includes need for future investigations of vehicle-related and physical environment-related influences and methodologies that move beyond cross-sectional designs and rely less on self-reports.
Resumo:
The adequacy and efficiency of existing legal and regulatory frameworks dealing with corporate phoenix activity have been repeatedly called into question over the past two decades through various reviews, inquiries, targeted regulatory operations and the implementation of piecemeal legislative reform. Despite these efforts, phoenix activity does not appear to have abated. While there is no law in Australia that declares ‘phoenix activity’ to be illegal, the behaviour that tends to manifest in phoenix activity can be capable of transgressing a vast array of law, including for example, corporate law, tax law, and employment law. This paper explores the notion that the persistence of phoenix activity despite the sheer extent of this law suggests that the law is not acting as powerfully as it might as a deterrent. Economic theories of entrepreneurship and innovation can to some extent explain why this is the case and also offer a sound basis for the evaluation and reconsideration of the existing law. The challenges facing key regulators are significant. Phoenix activity is not limited to particular corporate demographic: it occurs in SMEs, large companies and in corporate groups. The range of behaviour that can amount to phoenix activity is so broad, that not all phoenix activity is illegal. This paper will consider regulatory approaches to these challenges via analysis of approaches to detection and enforcement of the underlying law capturing illegal phoenix activity. Remedying the mischief of phoenix activity is of practical importance. The benefits include continued confidence in our economy, law that inspires best practice among directors, and law that is articulated in a manner such that penalties act as a sufficient deterrent and the regulatory system is able to detect offenders and bring them to account. Any further reforms must accommodate and tolerate legal phoenix activity, at least to some extent. Even then, phoenix activity pushes tolerance of repeated entrepreneurial failure to its absolute limit. The more limited liability is misused and abused, the stronger the argument to place some restrictions on access to limited liability. This paper proposes that such an approach is a legitimate next step for a robust and mature capitalist economy.
Resumo:
A semi-empirical model is presented for describing the interionic interactions in molten salts using the experimentally available structure data. An extension of Bertaut's method of non-overlapping charges is used to estimate the electrostatic interaction energy in ionic melts. It is shown, in agreement with earlier computer simulation studies, that this energy increases when an ionic salt melts. The repulsion between ions is described using a compressible ion theory which uses structure-independent parameters. The van der Waals interactions and the thermal free energy are also included in the total energy, which is minimised with respect to isostructural volume variations to calculate the equilibrium density. Detailed results are presented for three molten systems, NaCl, CaCl2 and ZnCl2, and are shown to be in satisfactory agreement with experiments. With reliable structural data now being reported for several other molten salts, the present study gains relevance.
Resumo:
Gravitaation kvanttiteorian muotoilu on ollut teoreettisten fyysikkojen tavoitteena kvanttimekaniikan synnystä lähtien. Kvanttimekaniikan soveltaminen korkean energian ilmiöihin yleisen suhteellisuusteorian viitekehyksessä johtaa aika-avaruuden koordinaattien operatiiviseen ei-kommutoivuuteen. Ei-kommutoivia aika-avaruuden geometrioita tavataan myös avointen säikeiden säieteorioiden tietyillä matalan energian rajoilla. Ei-kommutoivan aika-avaruuden gravitaatioteoria voisi olla yhteensopiva kvanttimekaniikan kanssa ja se voisi mahdollistaa erittäin lyhyiden etäisyyksien ja korkeiden energioiden prosessien ei-lokaaliksi uskotun fysiikan kuvauksen, sekä tuottaa yleisen suhteellisuusteorian kanssa yhtenevän teorian pitkillä etäisyyksillä. Tässä työssä tarkastelen gravitaatiota Poincarén symmetrian mittakenttäteoriana ja pyrin yleistämään tämän näkemyksen ei-kommutoiviin aika-avaruuksiin. Ensin esittelen Poincarén symmetrian keskeisen roolin relativistisessa fysiikassa ja sen kuinka klassinen gravitaatioteoria johdetaan Poincarén symmetrian mittakenttäteoriana kommutoivassa aika-avaruudessa. Jatkan esittelemällä ei-kommutoivan aika-avaruuden ja kvanttikenttäteorian muotoilun ei-kommutoivassa aika-avaruudessa. Mittasymmetrioiden lokaalin luonteen vuoksi tarkastelen huolellisesti mittakenttäteorioiden muotoilua ei-kommutoivassa aika-avaruudessa. Erityistä huomiota kiinnitetään näiden teorioiden vääristyneeseen Poincarén symmetriaan, joka on ei-kommutoivan aika-avaruuden omaama uudentyyppinen kvanttisymmetria. Seuraavaksi tarkastelen ei-kommutoivan gravitaatioteorian muotoilun ongelmia ja niihin kirjallisuudessa esitettyjä ratkaisuehdotuksia. Selitän kuinka kaikissa tähänastisissa lähestymistavoissa epäonnistutaan muotoilla kovarianssi yleisten koordinaattimunnosten suhteen, joka on yleisen suhteellisuusteorian kulmakivi. Lopuksi tutkin mahdollisuutta yleistää vääristynyt Poincarén symmetria lokaaliksi mittasymmetriaksi --- gravitaation ei-kommutoivan mittakenttäteorian saavuttamisen toivossa. Osoitan, että tällaista yleistystä ei voida saavuttaa vääristämällä Poincarén symmetriaa kovariantilla twist-elementillä. Näin ollen ei-kommutoivan gravitaation ja vääristyneen Poincarén symmetrian tutkimuksessa tulee jatkossa keskittyä muihin lähestymistapoihin.
Resumo:
The efforts of combining quantum theory with general relativity have been great and marked by several successes. One field where progress has lately been made is the study of noncommutative quantum field theories that arise as a low energy limit in certain string theories. The idea of noncommutativity comes naturally when combining these two extremes and has profound implications on results widely accepted in traditional, commutative, theories. In this work I review the status of one of the most important connections in physics, the spin-statistics relation. The relation is deeply ingrained in our reality in that it gives us the structure for the periodic table and is of crucial importance for the stability of all matter. The dramatic effects of noncommutativity of space-time coordinates, mainly the loss of Lorentz invariance, call the spin-statistics relation into question. The spin-statistics theorem is first presented in its traditional setting, giving a clarifying proof starting from minimal requirements. Next the notion of noncommutativity is introduced and its implications studied. The discussion is essentially based on twisted Poincaré symmetry, the space-time symmetry of noncommutative quantum field theory. The controversial issue of microcausality in noncommutative quantum field theory is settled by showing for the first time that the light wedge microcausality condition is compatible with the twisted Poincaré symmetry. The spin-statistics relation is considered both from the point of view of braided statistics, and in the traditional Lagrangian formulation of Pauli, with the conclusion that Pauli's age-old theorem stands even this test so dramatic for the whole structure of space-time.
Resumo:
Generalizations of H–J theory have been discussed before in the literature. The present approach differs from others in that it employs geometrical ideas on phase space and classical transformation theory to derive the basic equations. The relation between constants of motion and symmetries of the generalized H–J equations is then clarified. Journal of Mathematical Physics is copyrighted by The American Institute of Physics.
Resumo:
The effective medium theory for a system with randomly distributed point conductivity and polarisability is reformulated, with attention to cross-terms involving the two disorder parameters. The treatment reveals a certain inconsistency of the conventional theory owing to the neglect of the Maxwell-Wagner effect. The results are significant for the critical resistivity and dielectric anomalies of a binary liquid mixture at the phase separation point.
Resumo:
The theoretical results derived in Part I (Ramachandran, G.N., Lakshminarayan, A.V. and Kolaskar, A.S. (1973) Biochim. Biophys. Acta 303, 8–13) that the three bonds of the peptide unit meeting at N can have a pyramidal structure is confirmed by an analysis of 14 published crystal structures of small peptides. It is shown that the dihedral angles θN and Δω are correlated, while θC, is small and is uncorrelated with Δω, showing that the non-planar distortion at C′ is generally small.
Resumo:
A generalized Ginzburg-Landau approach is used to study the nonmonotonic temperature dependence of the upper critical field H c 2(T) in antiferromagnetic superconductors RE(Mo)6S8; RE = Dy, Tb, Gd. It is found that electrodynamic effects incorporated through screening and indirect coupling between the staggered magnetization M Q (T) and superconducting order parameter psgr cannot explain the observed nonmonotonicity. This suggests that the direct coupling between the two order parameters should be considered to understand the experimental results, a finding which is consistent with recent microscopic calculations.
Resumo:
By means of CNDO/2 calculations on N-methyl acetamide, it is shown that the state of minimum energy of the trans-peptide unit is a non-planar conformation, with the NH and NC2α bonds being significantly out of the plane formed by the atoms C1α, C′, O and N.
Resumo:
We investigate the Einstein relation for the diffusivity-mobility ratio (DMR) for n-i-p-i and the microstructures of nonlinear optical compounds on the basis of a newly formulated electron dispersion law. The corresponding results for III-V, ternary and quaternary materials form a special case of our generalized analysis. The respective DMRs for II-VI, IV-VI and stressed materials have been studied. It has been found that taking CdGeAs2, Cd3As2, InAs, InSb, Hg1−xCdxTe, In1−xGaxAsyP1−y lattices matched to InP, CdS, PbTe, PbSnTe and Pb1−xSnxSe and stressed InSb as examples that the DMR increases with increasing electron concentration in various manners with different numerical magnitudes which reflect the different signatures of the n-i-p-i systems and the corresponding microstructures. We have suggested an experimental method of determining the DMR in this case and the present simplified analysis is in agreement with the suggested relationship. In addition, our results find three applications in the field of quantum effect devices.
Resumo:
We have shown that novel synthesis methods combined with careful evaluation of DFT phonon calculations provides new insight into boron compounds including a capacity to predict Tc for AlB2-type superconductors.
Resumo:
This thesis consists of an introduction, four research articles and an appendix. The thesis studies relations between two different approaches to continuum limit of models of two dimensional statistical mechanics at criticality. The approach of conformal field theory (CFT) could be thought of as the algebraic classification of some basic objects in these models. It has been succesfully used by physicists since 1980's. The other approach, Schramm-Loewner evolutions (SLEs), is a recently introduced set of mathematical methods to study random curves or interfaces occurring in the continuum limit of the models. The first and second included articles argue on basis of statistical mechanics what would be a plausible relation between SLEs and conformal field theory. The first article studies multiple SLEs, several random curves simultaneously in a domain. The proposed definition is compatible with a natural commutation requirement suggested by Dubédat. The curves of multiple SLE may form different topological configurations, ``pure geometries''. We conjecture a relation between the topological configurations and CFT concepts of conformal blocks and operator product expansions. Example applications of multiple SLEs include crossing probabilities for percolation and Ising model. The second article studies SLE variants that represent models with boundary conditions implemented by primary fields. The most well known of these, SLE(kappa, rho), is shown to be simple in terms of the Coulomb gas formalism of CFT. In the third article the space of local martingales for variants of SLE is shown to carry a representation of Virasoro algebra. Finding this structure is guided by the relation of SLEs and CFTs in general, but the result is established in a straightforward fashion. This article, too, emphasizes multiple SLEs and proposes a possible way of treating pure geometries in terms of Coulomb gas. The fourth article states results of applications of the Virasoro structure to the open questions of SLE reversibility and duality. Proofs of the stated results are provided in the appendix. The objective is an indirect computation of certain polynomial expected values. Provided that these expected values exist, in generic cases they are shown to possess the desired properties, thus giving support for both reversibility and duality.
Resumo:
It is well known that an integrable (in the sense of Arnold-Jost) Hamiltonian system gives rise to quasi-periodic motion with trajectories running on invariant tori. These tori foliate the whole phase space. If we perturb an integrable system, the Kolmogorow-Arnold-Moser (KAM) theorem states that, provided some non-degeneracy condition and that the perturbation is sufficiently small, most of the invariant tori carrying quasi-periodic motion persist, getting only slightly deformed. The measure of the persisting invariant tori is large together with the inverse of the size of the perturbation. In the first part of the thesis we shall use a Renormalization Group (RG) scheme in order to prove the classical KAM result in the case of a non analytic perturbation (the latter will only be assumed to have continuous derivatives up to a sufficiently large order). We shall proceed by solving a sequence of problems in which theperturbations are analytic approximations of the original one. We will finally show that the approximate solutions will converge to a differentiable solution of our original problem. In the second part we will use an RG scheme using continuous scales, so that instead of solving an iterative equation as in the classical RG KAM, we will end up solving a partial differential equation. This will allow us to reduce the complications of treating a sequence of iterative equations to the use of the Banach fixed point theorem in a suitable Banach space.