959 resultados para Laguerre orthogonal polynomials
Resumo:
In this paper, we present a decoding principle for Goppa codes constructed by generalized polynomials, which is based on modified Berlekamp-Massey algorithm. This algorithm corrects all errors up to the Hamming weight $t\leq 2r$, i.e., whose minimum Hamming distance is $2^{2}r+1$.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Function approximation is a very important task in environments where the computation has to be based on extracting information from data samples in real world processes. So, the development of new mathematical model is a very important activity to guarantee the evolution of the function approximation area. In this sense, we will present the Polynomials Powers of Sigmoid (PPS) as a linear neural network. In this paper, we will introduce one series of practical results for the Polynomials Powers of Sigmoid, where we will show some advantages of the use of the powers of sigmiod functions in relationship the traditional MLP-Backpropagation and Polynomials in functions approximation problems.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presents an extension of the Enestrom-Kakeya theorem concerning the roots of a polynomial that arises from the analysis of the stability of Brown (K, L) methods. The generalization relates to relaxing one of the inequalities on the coefficients of the polynomial. Two results concerning the zeros of polynomials will be proved, one of them providing a partial answer to a conjecture by Meneguette (1994)[6]. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The objective of this paper is to model variations in test-day milk yields of first lactations of Holstein cows by RR using B-spline functions and Bayesian inference in order to fit adequate and parsimonious models for the estimation of genetic parameters. They used 152,145 test day milk yield records from 7317 first lactations of Holstein cows. The model established in this study was additive, permanent environmental and residual random effects. In addition, contemporary group and linear and quadratic effects of the age of cow at calving were included as fixed effects. Authors modeled the average lactation curve of the population with a fourth-order orthogonal Legendre polynomial. They concluded that a cubic B-spline with seven random regression coefficients for both the additive genetic and permanent environment effects was to be the best according to residual mean square and residual variance estimates. Moreover they urged a lower order model (quadratic B-spline with seven random regression coefficients for both random effects) could be adopted because it yielded practically the same genetic parameter estimates with parsimony. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The objective of this study was to estimate (co)variance components using random regression on B-spline functions to weight records obtained from birth to adulthood. A total of 82 064 weight records of 8145 females obtained from the data bank of the Nellore Breeding Program (PMGRN/Nellore Brazil) which started in 1987, were used. The models included direct additive and maternal genetic effects and animal and maternal permanent environmental effects as random. Contemporary group and dam age at calving (linear and quadratic effect) were included as fixed effects, and orthogonal Legendre polynomials of age (cubic regression) were considered as random covariate. The random effects were modeled using B-spline functions considering linear, quadratic and cubic polynomials for each individual segment. Residual variances were grouped in five age classes. Direct additive genetic and animal permanent environmental effects were modeled using up to seven knots (six segments). A single segment with two knots at the end points of the curve was used for the estimation of maternal genetic and maternal permanent environmental effects. A total of 15 models were studied, with the number of parameters ranging from 17 to 81. The models that used B-splines were compared with multi-trait analyses with nine weight traits and to a random regression model that used orthogonal Legendre polynomials. A model fitting quadratic B-splines, with four knots or three segments for direct additive genetic effect and animal permanent environmental effect and two knots for maternal additive genetic effect and maternal permanent environmental effect, was the most appropriate and parsimonious model to describe the covariance structure of the data. Selection for higher weight, such as at young ages, should be performed taking into account an increase in mature cow weight. Particularly, this is important in most of Nellore beef cattle production systems, where the cow herd is maintained on range conditions. There is limited modification of the growth curve of Nellore cattle with respect to the aim of selecting them for rapid growth at young ages while maintaining constant adult weight.
Resumo:
In Kantor and Trishin (1997) [3], Kantor and Trishin described the algebra of polynomial invariants of the adjoint representation of the Lie superalgebra gl(m vertical bar n) and a related algebra A, of what they called pseudosymmetric polynomials over an algebraically closed field K of characteristic zero. The algebra A(s) was investigated earlier by Stembridge (1985) who in [9] called the elements of A(s) supersymmetric polynomials and determined generators of A(s). The case of positive characteristic p of the ground field K has been recently investigated by La Scala and Zubkov (in press) in [6]. We extend their work and give a complete description of generators of polynomial invariants of the adjoint action of the general linear supergroup GL(m vertical bar n) and generators of A(s).
Resumo:
[EN] The information provided by the International Commission for the Conservation of Atlantic Tunas (ICCAT) on captures of skipjack tuna (Katsuwonus pelamis) in the central-east Atlantic has a number of limitations, such as gaps in the statistics for certain fleets and the level of spatiotemporal detail at which catches are reported. As a result, the quality of these data and their effectiveness for providing management advice is limited. In order to reconstruct missing spatiotemporal data of catches, the present study uses Data INterpolating Empirical Orthogonal Functions (DINEOF), a technique for missing data reconstruction, applied here for the first time to fisheries data. DINEOF is based on an Empirical Orthogonal Functions decomposition performed with a Lanczos method. DINEOF was tested with different amounts of missing data, intentionally removing values from 3.4% to 95.2% of data loss, and then compared with the same data set with no missing data. These validation analyses show that DINEOF is a reliable methodological approach of data reconstruction for the purposes of fishery management advice, even when the amount of missing data is very high.
Resumo:
[EN]This paper deals with the orthogonal projection (in the Frobenius sense) AN of the identity matrix I onto the matrix subspace AS (A ? Rn×n, S being an arbitrary subspace of Rn×n). Lower and upper bounds on the normalized Frobenius condition number of matrix AN are given. Furthermore, for every matrix subspace S ? Rn×n, a new index bF (A, S), which generalizes the normalized Frobenius condition number of matrix A, is defined and analyzed...
Resumo:
[EN]We analyze the best approximation