538 resultados para Infinitesimal symmetries
Resumo:
A complete laser cooling setup was built, with focus on threedimensional near-resonant optical lattices for cesium. These consist of regularly ordered micropotentials, created by the interference of four laser beams. One key feature of optical lattices is an inherent ”Sisyphus cooling” process. It efficiently extracts kinetic energy from the atoms, leading to equilibrium temperatures of a few µK. The corresponding kinetic energy is lower than the depth of the potential wells, so that atoms can be trapped. We performed detailed studies of the cooling processes in optical lattices by using the time-of-flight and absorption-imaging techniques. We investigated the dependence of the equilibrium temperature on the optical lattice parameters, such as detuning, optical potential and lattice geometry. The presence of neighbouring transitions in the cesium hyperfine level structure was used to break symmetries in order to identify, which role “red” and “blue” transitions play in the cooling. We also examined the limits for the cooling process in optical lattices, and the possible difference in steady-state velocity distributions for different directions. Moreover, in collaboration with ´Ecole Normale Sup´erieure in Paris, numerical simulations were performed in order to get more insight in the cooling dynamics of optical lattices. Optical lattices can keep atoms almost perfectly isolated from the environment and have therefore been suggested as a platform for a host of possible experiments aimed at coherent quantum manipulations, such as spin-squeezing and the implementation of quantum logic-gates. We developed a novel way to trap two different cesium ground states in two distinct, interpenetrating optical lattices, and to change the distance between sites of one lattice relative to sites of the other lattice. This is a first step towards the implementation of quantum simulation schemes in optical lattices.
Resumo:
In den letzten fünf Jahren hat sich mit dem Begriff desspektralen Tripels eine Möglichkeit zur Beschreibungdes an Spinoren gekoppelten Gravitationsfeldes auf(euklidischen) nichtkommutativen Räumen etabliert. Die Dynamik dieses Gravitationsfeldes ist dabei durch diesogenannte spektrale Wirkung, dieSpur einer geeigneten Funktion des Dirac-Operators,bestimmt. Erstaunlicherweise kann man die vollständige Lagrange-Dichtedes (an das Gravitationsfeld gekoppelten) Standardmodellsder Elementarteilchenphysik, also insbesondere auch denmassegebenden Higgs-Sektor, als spektrale Wirkungeines entsprechenden spektralen Tripels ableiten. Diesesspektrale Tripel ist als Produkt des spektralenTripels der (kommutativen) Raumzeit mit einem speziellendiskreten spektralen Tripel gegeben. In der Arbeitwerden solche diskreten spektralen Tripel, die bis vorKurzem neben dem nichtkommutativen Torus die einzigen,bekannten nichtkommutativen Beispiele waren, klassifiziert. Damit kannnun auch untersucht werden, inwiefern sich dasStandardmodell durch diese Eigenschaft gegenüber anderenYang-Mills-Higgs-Theorien auszeichnet. Es zeigt sichallerdings, dasses - trotz mancher Einschränkung - eine sehr große Zahl vonModellen gibt, die mit Hilfe von spektralen Tripelnabgeleitet werden können. Es wäre aber auch denkbar, dass sich das spektrale Tripeldes Standardmodells durch zusätzliche Strukturen,zum Beispiel durch eine darauf ``isometrisch'' wirkendeHopf-Algebra, auszeichnet. In der Arbeit werden, um dieseFrage untersuchen zu können, sogenannte H-symmetrischespektrale Tripel, welche solche Hopf-Isometrien aufweisen,definiert.Dabei ergibt sich auch eine Möglichkeit, neue(H-symmetrische) spektrale Tripel mit Hilfe ihrerzusätzlichen Symmetrienzu konstruieren. Dieser Algorithmus wird an den Beispielender kommutativen Sphäre, deren Spin-Geometrie hier zumersten Mal vollständig in der globalen, algebraischen Sprache der NichtkommutativenGeometrie beschrieben wird, sowie dem nichtkommutativenTorus illustriert.Als Anwendung werden einige neue Beipiele konstruiert. Eswird gezeigt, dass sich für Yang-Mills Higgs-Theorien, diemit Hilfe von H-symmetrischen spektralen Tripeln abgeleitetwerden, aus den zusätzlichen Isometrien Einschränkungen andiefermionischen Massenmatrizen ergeben. Im letzten Abschnitt der Arbeit wird kurz auf dieQuantisierung der spektralen Wirkung für diskrete spektraleTripel eingegangen.Außerdem wird mit dem Begriff des spektralen Quadrupels einKonzept für die nichtkommutative Verallgemeinerungvon lorentzschen Spin-Mannigfaltigkeiten vorgestellt.
Resumo:
The first part of the thesis concerns the study of inflation in the context of a theory of gravity called "Induced Gravity" in which the gravitational coupling varies in time according to the dynamics of the very same scalar field (the "inflaton") driving inflation, while taking on the value measured today since the end of inflation. Through the analytical and numerical analysis of scalar and tensor cosmological perturbations we show that the model leads to consistent predictions for a broad variety of symmetry-breaking inflaton's potentials, once that a dimensionless parameter entering into the action is properly constrained. We also discuss the average expansion of the Universe after inflation (when the inflaton undergoes coherent oscillations about the minimum of its potential) and determine the effective equation of state. Finally, we analyze the resonant and perturbative decay of the inflaton during (p)reheating. The second part is devoted to the study of a proposal for a quantum theory of gravity dubbed "Horava-Lifshitz (HL) Gravity" which relies on power-counting renormalizability while explicitly breaking Lorentz invariance. We test a pair of variants of the theory ("projectable" and "non-projectable") on a cosmological background and with the inclusion of scalar field matter. By inspecting the quadratic action for the linear scalar cosmological perturbations we determine the actual number of propagating degrees of freedom and realize that the theory, being endowed with less symmetries than General Relativity, does admit an extra gravitational degree of freedom which is potentially unstable. More specifically, we conclude that in the case of projectable HL Gravity the extra mode is either a ghost or a tachyon, whereas in the case of non-projectable HL Gravity the extra mode can be made well-behaved for suitable choices of a pair of free dimensionless parameters and, moreover, turns out to decouple from the low-energy Physics.
Resumo:
In der Nichtkommutativen Geometrie werden Räume und Strukturen durch Algebren beschrieben. Insbesondere werden hierbei klassische Symmetrien durch Hopf-Algebren und Quantengruppen ausgedrückt bzw. verallgemeinert. Wir zeigen in dieser Arbeit, daß der bekannte Quantendoppeltorus, der die Summe aus einem kommutativen und einem nichtkommutativen 2-Torus ist, nur den Spezialfall einer allgemeineren Konstruktion darstellt, die der Summe aus einem kommutativen und mehreren nichtkommutativen n-Tori eine Hopf-Algebren-Struktur zuordnet. Diese Konstruktion führt zur Definition der Nichtkommutativen Multi-Tori. Die Duale dieser Multi-Tori ist eine Kreuzproduktalgebra, die als Quantisierung von Gruppenorbits interpretiert werden kann. Für den Fall von Wurzeln der Eins erhält man wichtige Klassen von endlich-dimensionalen Kac-Algebren, insbesondere die 8-dim. Kac-Paljutkin-Algebra. Ebenfalls für Wurzeln der Eins kann man die Nichtkommutativen Multi-Tori als Hopf-Galois-Erweiterungen des kommutativen Torus interpretieren, wobei die Rolle der typischen Faser von einer endlich-dimensionalen Hopf-Algebra gespielt wird. Der Nichtkommutative 2-Torus besitzt bekanntlich eine u(1)xu(1)-Symmetrie. Wir zeigen, daß er eine größere Quantengruppen-Symmetrie besitzt, die allerdings nicht auf die Spektralen Tripel des Nichtkommutativen Torus fortgesetzt werden kann.
Resumo:
3D video-fluoroscopy is an accurate but cumbersome technique to estimate natural or prosthetic human joint kinematics. This dissertation proposes innovative methodologies to improve the 3D fluoroscopic analysis reliability and usability. Being based on direct radiographic imaging of the joint, and avoiding soft tissue artefact that limits the accuracy of skin marker based techniques, the fluoroscopic analysis has a potential accuracy of the order of mm/deg or better. It can provide fundamental informations for clinical and methodological applications, but, notwithstanding the number of methodological protocols proposed in the literature, time consuming user interaction is exploited to obtain consistent results. The user-dependency prevented a reliable quantification of the actual accuracy and precision of the methods, and, consequently, slowed down the translation to the clinical practice. The objective of the present work was to speed up this process introducing methodological improvements in the analysis. In the thesis, the fluoroscopic analysis was characterized in depth, in order to evaluate its pros and cons, and to provide reliable solutions to overcome its limitations. To this aim, an analytical approach was followed. The major sources of error were isolated with in-silico preliminary studies as: (a) geometric distortion and calibration errors, (b) 2D images and 3D models resolutions, (c) incorrect contour extraction, (d) bone model symmetries, (e) optimization algorithm limitations, (f) user errors. The effect of each criticality was quantified, and verified with an in-vivo preliminary study on the elbow joint. The dominant source of error was identified in the limited extent of the convergence domain for the local optimization algorithms, which forced the user to manually specify the starting pose for the estimating process. To solve this problem, two different approaches were followed: to increase the optimal pose convergence basin, the local approach used sequential alignments of the 6 degrees of freedom in order of sensitivity, or a geometrical feature-based estimation of the initial conditions for the optimization; the global approach used an unsupervised memetic algorithm to optimally explore the search domain. The performances of the technique were evaluated with a series of in-silico studies and validated in-vitro with a phantom based comparison with a radiostereometric gold-standard. The accuracy of the method is joint-dependent, and for the intact knee joint, the new unsupervised algorithm guaranteed a maximum error lower than 0.5 mm for in-plane translations, 10 mm for out-of-plane translation, and of 3 deg for rotations in a mono-planar setup; and lower than 0.5 mm for translations and 1 deg for rotations in a bi-planar setups. The bi-planar setup is best suited when accurate results are needed, such as for methodological research studies. The mono-planar analysis may be enough for clinical application when the analysis time and cost may be an issue. A further reduction of the user interaction was obtained for prosthetic joints kinematics. A mixed region-growing and level-set segmentation method was proposed and halved the analysis time, delegating the computational burden to the machine. In-silico and in-vivo studies demonstrated that the reliability of the new semiautomatic method was comparable to a user defined manual gold-standard. The improved fluoroscopic analysis was finally applied to a first in-vivo methodological study on the foot kinematics. Preliminary evaluations showed that the presented methodology represents a feasible gold-standard for the validation of skin marker based foot kinematics protocols.
Resumo:
The present thesis is a contribution to the multi-variable theory of Bergman and Hardy Toeplitz operators on spaces of holomorphic functions over finite and infinite dimensional domains. In particular, we focus on certain spectral invariant Frechet operator algebras F closely related to the local symbol behavior of Toeplitz operators in F. We summarize results due to B. Gramsch et.al. on the construction of Psi_0- and Psi^*-algebras in operator algebras and corresponding scales of generalized Sobolev spaces using commutator methods, generalized Laplacians and strongly continuous group actions. In the case of the Segal-Bargmann space H^2(C^n,m) of Gaussian square integrable entire functions on C^n we determine a class of vector-fields Y(C^n) supported in complex cones K. Further, we require that for any finite subset V of Y(C^n) the Toeplitz projection P is a smooth element in the Psi_0-algebra constructed by commutator methods with respect to V. As a result we obtain Psi_0- and Psi^*-operator algebras F localized in cones K. It is an immediate consequence that F contains all Toeplitz operators T_f with a symbol f of certain regularity in an open neighborhood of K. There is a natural unitary group action on H^2(C^n,m) which is induced by weighted shifts and unitary groups on C^n. We examine the corresponding Psi^*-algebra A of smooth elements in Toeplitz-C^*-algebras. Among other results sufficient conditions on the symbol f for T_f to belong to A are given in terms of estimates on its Berezin-transform. Local aspects of the Szegö projection P_s on the Heisenbeg group and the corresponding Toeplitz operators T_f with symbol f are studied. In this connection we apply a result due to Nagel and Stein which states that for any strictly pseudo-convex domain U the projection P_s is a pseudodifferential operator of exotic type (1/2, 1/2). The second part of this thesis is devoted to the infinite dimensional theory of Bergman and Hardy spaces and the corresponding Toeplitz operators. We give a new proof of a result observed by Boland and Waelbroeck. Namely, that the space of all holomorphic functions H(U) on an open subset U of a DFN-space (dual Frechet nuclear space) is a FN-space (Frechet nuclear space) equipped with the compact open topology. Using the nuclearity of H(U) we obtain Cauchy-Weil-type integral formulas for closed subalgebras A in H_b(U), the space of all bounded holomorphic functions on U, where A separates points. Further, we prove the existence of Hardy spaces of holomorphic functions on U corresponding to the abstract Shilov boundary S_A of A and with respect to a suitable boundary measure on S_A. Finally, for a domain U in a DFN-space or a polish spaces we consider the symmetrizations m_s of measures m on U by suitable representations of a group G in the group of homeomorphisms on U. In particular,in the case where m leads to Bergman spaces of holomorphic functions on U, the group G is compact and the representation is continuous we show that m_s defines a Bergman space of holomorphic functions on U as well. This leads to unitary group representations of G on L^p- and Bergman spaces inducing operator algebras of smooth elements related to the symmetries of U.
Resumo:
This thesis is concerned with calculations in manifestly Lorentz-invariant baryon chiral perturbation theory beyond order D=4. We investigate two different methods. The first approach consists of the inclusion of additional particles besides pions and nucleons as explicit degrees of freedom. This results in the resummation of an infinite number of higher-order terms which contribute to higher-order low-energy constants in the standard formulation. In this thesis the nucleon axial, induced pseudoscalar, and pion-nucleon form factors are investigated. They are first calculated in the standard approach up to order D=4. Next, the inclusion of the axial-vector meson a_1(1260) is considered. We find three diagrams with an axial-vector meson which are relevant to the form factors. Due to the applied renormalization scheme, however, the contributions of the two loop diagrams vanish and only a tree diagram contributes explicitly. The appearing coupling constant is fitted to experimental data of the axial form factor. The inclusion of the axial-vector meson results in an improved description of the axial form factor for higher values of momentum transfer. The contributions to the induced pseudoscalar form factor, however, are negligible for the considered momentum transfer, and the axial-vector meson does not contribute to the pion-nucleon form factor. The second method consists in the explicit calculation of higher-order diagrams. This thesis describes the applied renormalization scheme and shows that all symmetries and the power counting are preserved. As an application we determine the nucleon mass up to order D=6 which includes the evaluation of two-loop diagrams. This is the first complete calculation in manifestly Lorentz-invariant baryon chiral perturbation theory at the two-loop level. The numerical contributions of the terms of order D=5 and D=6 are estimated, and we investigate their pion-mass dependence. Furthermore, the higher-order terms of the nucleon sigma term are determined with the help of the Feynman-Hellmann theorem.
Resumo:
Discotic hexa-peri-hexabenzocoronene (HBC) derivatives have attracted intensive scientific interest due to their unique optoelectronic properties, which depends, to a large extend, upon the attached functional groups. The presented work covers the synthesis of novel HBC building blocks and new HBC derivatives as functional materials. The traditional preparation of HBC derivatives requires elaborate synthetic techniques and tremendous effort. Especially, more than 10 synthetic steps are usually necessary to approach HBCs with lower symmetries. In order to simplify the synthetic work and reduce the high costs, a novel synthetic strategy involving only four steps was developed based on 2,3,5,6-tetraphenyl-1,4-diiodobenzene intermediates and palladium catalyzed Suzuki cross coupling reactions. In order to introduce various functionalities and expand the diversity of multi-functionalizations, a novel C2v-symmetric dihalo HBC building block 2-47, which contains one iodine and one bromine in para positions, was prepared following the traditional intermolecular [4+2] Diels-Alder reaction route. The outstanding chemical selectivity between iodo and bromo groups in this compound consequently leads to lots of HBC derivatives bearing different functionalities. Directly attached heteroatoms will improve the material properties. According to the application of intramolecular Scholl reaction to a para-dimethoxy HPB, which leads to a meta-dimethoxy HBC, a phenomenon of phenyl group migration was discovered. Thereby, several interesting mechanistic details involving arenium cation intermediates were discussed. With a series of dipole functionalized HBCs, the molecular dynamics of this kind of materials was studied in different phases by DSC, 2D WAXD, solid state NMR and dielectric spectroscopies. High charge carrier mobility is an important parameter for a semiconductive material and depends on the degree of intramolecular order of the discotic molecules in thin films for HBC derivatives. Dipole – dipole interaction and hydrogen bonds were respectively introduced in order to achieve highly ordered supramolecular structure. The self-assembly behavior of these materials were investigated both in solution and solid state. Depending upon the different functionalities, these novel materials show either gelating or non-linear optical properties, which consequently broaden their applications as functional materials. In the field of conceivable electronic devices at a molecular level, HBCs hold high promise. Differently functionalized HBCs have been used as active component in the studies of single-molecular CFET and metal-SAMs-metal junctions. The outstanding properties shown in these materials promise their exciting potential applications in molecular devices.
Resumo:
Diese Arbeit besch"aftigt sich mit algebraischen Zyklen auf komplexen abelschen Variet"aten der Dimension 4. Ziel der Arbeit ist ein nicht-triviales Element in $Griff^{3,2}(A^4)$ zu konstruieren. Hier bezeichnet $A^4$ die emph{generische} abelsche Variet"at der Dimension 4 mit Polarisierung von Typ $(1,2,2,2)$. Die ersten drei Kapitel sind eine Wiederholung von elementaren Definitionen und Begriffen und daher eine Festlegung der Notation. In diesen erinnern wir an elementare Eigenschaften der von Saito definierten Filtrierungen $F_S$ und $Z$ auf den Chowgruppen (vgl. cite{Sa0} und cite{Sa}). Wir wiederholen auch eine Beziehung zwischen der $F_S$-Filtrierung und der Zerlegung von Beauville der Chowgruppen (vgl. cite{Be2} und cite{DeMu}), welche aus cite{Mu} stammt. Die wichtigsten Begriffe in diesem Teil sind die emph{h"ohere Griffiths' Gruppen} und die emph{infinitesimalen Invarianten h"oherer Ordnung}. Dann besch"aftigen wir uns mit emph{verallgemeinerten Prym-Variet"aten} bez"uglich $(2:1)$ "Uberlagerungen von Kurven. Wir geben ihre Konstruktion und wichtige geometrische Eigenschaften und berechnen den Typ ihrer Polarisierung. Kapitel ref{p-moduli} enth"alt ein Resultat aus cite{BCV} "uber die Dominanz der Abbildung $p(3,2):mathcal R(3,2)longrightarrow mathcal A_4(1,2,2,2)$. Dieses Resultat ist von Relevanz f"ur uns, weil es besagt, dass die generische abelsche Variet"at der Dimension 4 mit Polarisierung von Typ $(1,2,2,2)$ eine verallgemeinerte Prym-Variet"at bez"uglich eine $(2:1)$ "Uberlagerung einer Kurve vom Geschlecht $7$ "uber eine Kurve vom Geschlecht $3$ ist. Der zweite Teil der Dissertation ist die eigentliche Arbeit und ist auf folgende Weise strukturiert: Kapitel ref{Deg} enth"alt die Konstruktion der Degeneration von $A^4$. Das bedeutet, dass wir in diesem Kapitel eine Familie $Xlongrightarrow S$ von verallgemeinerten Prym-Variet"aten konstruieren, sodass die klassifizierende Abbildung $Slongrightarrow mathcal A_4(1,2,2,2)$ dominant ist. Desweiteren wird ein relativer Zykel $Y/S$ auf $X/S$ konstruiert zusammen mit einer Untervariet"at $Tsubset S$, sodass wir eine explizite Beschreibung der Einbettung $Yvert _Thookrightarrow Xvert _T$ angeben k"onnen. Das letzte und wichtigste Kapitel enth"ahlt Folgendes: Wir beweisen dass, die emph{ infinitesimale Invariante zweiter Ordnung} $delta _2(alpha)$ von $alpha$ nicht trivial ist. Hier bezeichnet $alpha$ die Komponente von $Y$ in $Ch^3_{(2)}(X/S)$ unter der Beauville-Zerlegung. Damit und mit Hilfe der Ergebnissen aus Kapitel ref{Cohm} k"onnen wir zeigen, dass [ 0neq [alpha ] in Griff ^{3,2}(X/S) . ] Wir k"onnen diese Aussage verfeinern und zeigen (vgl. Theorem ref{a4}) begin{theorem}label{maintheorem} F"ur $sin S$ generisch gilt [ 0neq [alpha _s ]in Griff ^{3,2}(A^4) , ] wobei $A^4$ die generische abelsche Variet"at der Dimension $4$ mit Polarisierung vom Typ $(1,2,2,2)$ ist. end{theorem}
Resumo:
Der Einsatz von Penningfallen in der Massenspektrometrie hat zu einem einmaligen Genauigkeitssprung geführt. Dadurch wurden Massenwerte verschiedenster Atome zu wichtigen Eingangsparametern bei immer mehr physikalischen Fragestellungen. Die Massenspektrometrie mit Hilfe von Penningfallen basiert auf der Bestimmung der freien Zyklotronfrequenz eines Ions in einem homogenen Magnetfeld νc=qB/(2πm). Sie wird mit Flugzeitmethode (TOF-ICR) bestimmt, wobei eine relative Massenungenauigkeit δm/m von wenigen 10^-9 bei Nukliden mit Lebensdauern von <500 ms erreicht wird. Dies wurde durch die im Rahmen dieser Arbeit erstmals in der Penningfallen-Massenspektrometrie eingesetzten Ramsey-Methode möglich. Dabei werden zeitlich separierte, oszillierenden Feldern zur resonanten Ionenanregung genutzt, um die Frequenzmessung durch die Flugzeitmethode zu verbessern. Damit wurden am Penningfallenmassenspektrometer ISOLTRAP an ISOLDE/CERN die Massen der Nuklide 26,27Al und 38,39Ca bestimmt. Alle Massen wurden in die „Atomic Mass Evaluation“ eingebettet. Die Massenwerte von 26Al und 38Ca dienten insbesondere zu Tests des Standardmodells. Um mit Massenwerten fundamentale Symmetrien oder die Quantenelektrodynamik (QED) in extremen Feldern zu testen wurde ein neues Penningfallenprojekt (PENTATRAP) für hochpräzise Massenmessungen an hochgeladenen Ionen konzipiert. In dieser Doktorarbeit wurde vornehmlich die Entwicklung der Penningfallen betrieben. Eine Neuerung bei Penningfallenexperimenten ist dabei die permanente Beobachtung des Magnetfeldes B und seiner zeitlichen Fluktuationen durch so genannte „Monitorfallen“.
Resumo:
In this thesis we develop further the functional renormalization group (RG) approach to quantum field theory (QFT) based on the effective average action (EAA) and on the exact flow equation that it satisfies. The EAA is a generalization of the standard effective action that interpolates smoothly between the bare action for krightarrowinfty and the standard effective action rnfor krightarrow0. In this way, the problem of performing the functional integral is converted into the problem of integrating the exact flow of the EAA from the UV to the IR. The EAA formalism deals naturally with several different aspects of a QFT. One aspect is related to the discovery of non-Gaussian fixed points of the RG flow that can be used to construct continuum limits. In particular, the EAA framework is a useful setting to search for Asymptotically Safe theories, i.e. theories valid up to arbitrarily high energies. A second aspect in which the EAA reveals its usefulness are non-perturbative calculations. In fact, the exact flow that it satisfies is a valuable starting point for devising new approximation schemes. In the first part of this thesis we review and extend the formalism, in particular we derive the exact RG flow equation for the EAA and the related hierarchy of coupled flow equations for the proper-vertices. We show how standard perturbation theory emerges as a particular way to iteratively solve the flow equation, if the starting point is the bare action. Next, we explore both technical and conceptual issues by means of three different applications of the formalism, to QED, to general non-linear sigma models (NLsigmaM) and to matter fields on curved spacetimes. In the main part of this thesis we construct the EAA for non-abelian gauge theories and for quantum Einstein gravity (QEG), using the background field method to implement the coarse-graining procedure in a gauge invariant way. We propose a new truncation scheme where the EAA is expanded in powers of the curvature or field strength. Crucial to the practical use of this expansion is the development of new techniques to manage functional traces such as the algorithm proposed in this thesis. This allows to project the flow of all terms in the EAA which are analytic in the fields. As an application we show how the low energy effective action for quantum gravity emerges as the result of integrating the RG flow. In any treatment of theories with local symmetries that introduces a reference scale, the question of preserving gauge invariance along the flow emerges as predominant. In the EAA framework this problem is dealt with the use of the background field formalism. This comes at the cost of enlarging the theory space where the EAA lives to the space of functionals of both fluctuation and background fields. In this thesis, we study how the identities dictated by the symmetries are modified by the introduction of the cutoff and we study so called bimetric truncations of the EAA that contain both fluctuation and background couplings. In particular, we confirm the existence of a non-Gaussian fixed point for QEG, that is at the heart of the Asymptotic Safety scenario in quantum gravity; in the enlarged bimetric theory space where the running of the cosmological constant and of Newton's constant is influenced by fluctuation couplings.
Resumo:
The asymptotic safety scenario allows to define a consistent theory of quantized gravity within the framework of quantum field theory. The central conjecture of this scenario is the existence of a non-Gaussian fixed point of the theory's renormalization group flow, that allows to formulate renormalization conditions that render the theory fully predictive. Investigations of this possibility use an exact functional renormalization group equation as a primary non-perturbative tool. This equation implements Wilsonian renormalization group transformations, and is demonstrated to represent a reformulation of the functional integral approach to quantum field theory.rnAs its main result, this thesis develops an algebraic algorithm which allows to systematically construct the renormalization group flow of gauge theories as well as gravity in arbitrary expansion schemes. In particular, it uses off-diagonal heat kernel techniques to efficiently handle the non-minimal differential operators which appear due to gauge symmetries. The central virtue of the algorithm is that no additional simplifications need to be employed, opening the possibility for more systematic investigations of the emergence of non-perturbative phenomena. As a by-product several novel results on the heat kernel expansion of the Laplace operator acting on general gauge bundles are obtained.rnThe constructed algorithm is used to re-derive the renormalization group flow of gravity in the Einstein-Hilbert truncation, showing the manifest background independence of the results. The well-studied Einstein-Hilbert case is further advanced by taking the effect of a running ghost field renormalization on the gravitational coupling constants into account. A detailed numerical analysis reveals a further stabilization of the found non-Gaussian fixed point.rnFinally, the proposed algorithm is applied to the case of higher derivative gravity including all curvature squared interactions. This establishes an improvement of existing computations, taking the independent running of the Euler topological term into account. Known perturbative results are reproduced in this case from the renormalization group equation, identifying however a unique non-Gaussian fixed point.rn
Resumo:
Spectroscopy of the 1S-2S transition of antihydrogen confined in a neutral atom trap and comparison with the equivalent spectral line in hydrogen will provide an accurate test of CPT symmetry and the first one in a mixed baryon-lepton system. Also, with neutral antihydrogen atoms, the gravitational interaction between matter and antimatter can be tested unperturbed by the much stronger Coulomb forces.rnAntihydrogen is regularly produced at CERN's Antiproton Decelerator by three-body-recombination (TBR) of one antiproton and two positrons. The method requires injecting antiprotons into a cloud of positrons, which raises the average temperature of the antihydrogen atoms produced way above the typical 0.5 K trap depths of neutral atom traps. Therefore only very few antihydrogen atoms can be confined at a time. Precision measurements, like laser spectroscopy, will greatly benefit from larger numbers of simultaneously trapped antihydrogen atoms.rnTherefore, the ATRAP collaboration developed a different production method that has the potential to create much larger numbers of cold, trappable antihydrogen atoms. Positrons and antiprotons are stored and cooled in a Penning trap in close proximity. Laser excited cesium atoms collide with the positrons, forming Rydberg positronium, a bound state of an electron and a positron. The positronium atoms are no longer confined by the electric potentials of the Penning trap and some drift into the neighboring cloud of antiprotons where, in a second charge exchange collision, they form antihydrogen. The antiprotons remain at rest during the entire process, so much larger numbers of trappable antihydrogen atoms can be produced. Laser excitation is necessary to increase the efficiency of the process since the cross sections for charge-exchange collisions scale with the fourth power of the principal quantum number n.rnThis method, named double charge-exchange, was demonstrated by ATRAP in 2004. Since then, ATRAP constructed a new combined Penning Ioffe trap and a new laser system. The goal of this thesis was to implement the double charge-exchange method in this new apparatus and increase the number of antihydrogen atoms produced.rnCompared to our previous experiment, we could raise the numbers of positronium and antihydrogen atoms produced by two orders of magnitude. Most of this gain is due to the larger positron and antiproton plasmas available by now, but we could also achieve significant improvements in the efficiencies of the individual steps. We therefore showed that the double charge-exchange can produce comparable numbers of antihydrogen as the TBR method, but the fraction of cold, trappable atoms is expected to be much higher. Therefore this work is an important step towards precision measurements with trapped antihydrogen atoms.
Resumo:
A permanent electric dipole moment of the neutron violates time reversal as well as parity symmetry. Thus it also violates the combination of charge conjugation and parity symmetry if the combination of all three symmetries is a symmetry of nature. The violation of these symmetries could help to explain the observed baryon content of the Universe. The prediction of the Standard Model of particle physics for the neutron electric dipole moment is only about 10e−32 ecm. At the same time the combined violation of charge conjugation and parity symmetry in the Standard Model is insufficient to explain the observed baryon asymmetry of the Universe. Several extensions to the Standard Model can explain the observed baryon asymmetry and also predict values for the neutron electric dipole moment just below the current best experimental limit of d n < 2.9e−26 ecm, (90% C.L.) that has been obtained by the Sussex-RAL-ILL collaboration in 2006. The very same experiment that set the current best limit on the electric dipole moment has been upgraded and moved to the Paul Scherrer Institute. Now an international collaboration is aiming at increasing the sensitivity for an electric dipole moment by more than an order of magnitude. This thesis took place in the frame of this experiment and went along with the commissioning of the experiment until first data taking. After a short layout of the theoretical background in chapter 1, the experiment with all subsystems and their performance are described in detail in chapter 2. To reach the goal sensitivity the control of systematic errors is as important as an increase in statistical sensitivity. Known systematic efects are described and evaluated in chapter 3. During about ten days in 2012, a first set of data was measured with the experiment at the Paul Scherrer Institute. An analysis of this data is presented in chapter 4, together with general tools developed for future analysis eforts. The result for the upper limit of an electric dipole moment of the neutron is |dn| ≤ 6.4e−25 ecm (95%C.L.). Chapter 5 presents investigations for a next generation experiment, to build electrodes made partly from insulating material. Among other advantages, such electrodes would reduce magnetic noise, generated by the thermal movement of charge carriers. The last Chapter summarizes this work and gives an outlook.