989 resultados para GaN Buffer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method for introducing polarization effects in the simulation of GaN-based heterojunction devices is proposed. A delta doping layer is inserted at the interface of heterojunction and the ionized donors or acceptors act as polarization induced fixed charges. Thus polarization effects can be taken into account in a traditional device simulator. Ga-face and N-face single AlGaN/GaN heterostructures are simulated, and the simulation results show that carrier confinement takes place only in the former structure while not in the latter one. The sheet density of free electrons at the interface of Ga-face AlGaN/GaN increases with the Al composition and the thickness of AlGaN. The consistence of simulation results with the experiments and calculations reported elsewhere shows that this method can effectively introduce polarization effects in the simulation of GaN-based heterojunction devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A self-consistent solution of conduction band profile and subband energies for AlxGa1-xN-GaN quantum well is presented by solving the Schrodinger and Poisson equations. A new method is introduced to deal with the accumulation of the immobile charges at the AlxGa1-xN-GaN interface caused by spontaneous and piezoelectric polarization in the process of solving the Poisson equation. The effect of spontaneous and piezoelectric polarization is taken into account in the calculation. It also includes the effect of exchange-correlation to the one electron potential on the Coulomb interaction. Our analysis is based on the one electron effective-mass approximation and charge conservation condition. Based on this model, the electron wave functions and the conduction band structure are derived. We calculate the intersubband transition wavelength lambda(21) for different Al molar fraction of barrier and thickness of well. The calculated result can fit to the experimental data well. The dependence of the absorption coefficient a on the well width and the doping density is also investigated theoretically. (C) 2004 American Vacuum Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A self-consistent calculation of the subband energy levels of n-doped quantum wells is studied. A comparison is made between theoretical results and experimental data. In order to account for the deviations between them, the ground-state electron-electron exchange interactions, the ground-state direct Coulomb interactions, the depolarization effect, and the exciton-like effect are considered in the simulations. The agreement between theory and experiment is greatly improved when all these aspects are taken into account. The ground-to-excited-state energy difference increases by 8 meV from its self-consistent value if one considers the depolarization effect and the exciton-like effect only. It appears that the electron-electron exchange interactions account for most of the observed residual blueshift for the infrared intersubband absorbance in AlxGa1-xN/GaN multiple quantum wells. It seems that electrons on the surface of the k-space Fermi gas make the main contribution to the electron-electron exchange interactions, while for electrons further inside the Fermi gas it is difficult to exchange their positions. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The depth distribution of the strain-related tetragonal distortion e(T) in the GaN epilayer with low-temperature AlN interlayer (LT-AlN IL) on Si(111) substrate is investigated by Rutherford backscattering and channeling. The samples with the LT-AlN IL of 8 and 16 nm thickness are studied, which are also compared with the sample without the LT-AlN IL. For the sample with 16-nm-thick LT-AlN IL, it is found that there exists a step-down of e(T) of about 0.1% in the strain distribution. Meanwhile, the angular scan around the normal GaN <0001> axis shows a tilt difference about 0.01degrees between the two parts of GaN separated by the LT-AlN IL, which means that these two GaN layers are partially decoupled by the AlN interlayer. However, for the sample with 8-nm-thick LT-AlN IL, neither step-down of e(T) nor the decoupling phenomenon is found. The 0.01degrees decoupled angle in the sample with 16-nm-thick LT-AlN IL confirms the relaxation of the LT-AlN IL. Thus the step-down of e(T) should result from the compressive strain compensation brought by the relaxed AlN interlayer. It is concluded that the strain compensation effect will occur only when the thickness of the LT-AlN IL is beyond a critical thickness. (C) 2004 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the measured capacitance- voltage curves of Ni Schottky contacts with different areas on strained AlGaN/ GaN heterostructures and the current- voltage characteristics for the AlGaN/ GaN heterostructure field- effect transistors at low drain- source voltage, we found that the two- dimensional electron gas (2DEG) electron mobility increased as the Ni Schottky contact area increased. When the gate bias increased from negative to positive, the 2DEG electron mobility for the samples increased monotonically except for the sample with the largest Ni Schottky contact area. A new scattering mechanism is proposed, which is based on the polarization Coulomb field scattering related to the strain variation of the AlGaN barrier layer. (C) 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Al0.58Ga0.42N epilayers are grown by ammonia gas source molecular beam epitaxy (NH3-MBE) on (0001) sapphire substrate using AlGaN buffer layer. The effects of the buffer layer growth temperature on the properties of Al0.58Ga0.42N epilayer are especially investigated. In-situ high-energy electron diffraction (RHEED), double-crystal X-ray diffraction (DCXRD), atomic force microscopy (AFM), photoconductivity measurement and cathodoluminescence (CL) are used to characterize the samples. It is found that high growth temperature of AlGaN buffer layer would improve the crystalline quality, surface smoothness, optical quality and uniformity of the Al0.58Ga0.42N epilayer. The likely reason for such improvements is also suggested. (C) 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The exponential degradation of the photoluminescence (PL) intensity at the near-band-gap was observed in heavily doped or low-quality GaN with pristine surface under continuous helium-cadmium laser excitation. In doped GaN samples, the degradation speed increased with doping concentration. The oxidation of the surface with laser irradiation was confirmed by x-ray photoemission spectroscopy measurements. The oxidation process introduced many oxygen impurities and made an increase of the surface energy band bending implied by the shift of Ga 3d binding energy. The reason for PL degradation may lie in that these defect states act as nonradiative centers and/or the increase of the surface barrier height reduces the probability of radiative recombination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new GaN-based ultraviolet photodetector with Schottky barrior structure is proposed. Comparied with the conventional i-GaN/n(+) -GaN structure, there is an additional thin n-AlGaN cap layer on the i-GaN in the new structure. The simulation result demonstrates that the new structure leads to an increased quantum efficiency in GaN photodetection, since the negative effect of surface states on the photodetector is reduced in the new structure. In addition, it is suggested that the performance of device with the new structure could be further improved by employing an even thinner AlGaN cap layer with higher carrier concentration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The GaN film was grown on the (111) silicon-on-insulator (SOI) substrate by metal-organic chemical vapor deposition and then annealed in the deposition chamber. A multiple beam optical stress sensor was used for the in-situ stress measurement, and X-ray diffraction (XRD) and Raman spectroscopy were used for the characterization of GaN film. Comparing the characterization results of the GaN films on the bulk silicon and SOI substrates, we can see that the Raman spectra show the 3.0 cm(-1) frequency shift of E-2(TO), and the full width at half maximum of XRD rocking curves for GaN (0002) decrease from 954 arc see to 472 are sec. The results show that the SOI substrates can reduce the tensile stress in the GaN film and improve the crystalline quality. The annealing process is helpful for the stress reduction of the GaN film. The SOI substrate with the thin top silicon film is more effective than the thick top silicon film SOI substrate for the stress reduction. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the temperature dependence of absorption edge of GaN thin films grown on sapphire substrate by metal-organic chemical vapor deposition using optical absorption spectroscopy. A shift in absorption edge of about 55 meV has been observed in temperature range 273-343 K. We have proposed a theoretical model to find the energy gap from absorption coefficient using alpha = alpha(max) + (alpha(min) - alpha(max))/[1 + exp 2(E - E-g + KT)/KT]. Temperature dependence of band gap has also been studied by finding an appropriate theoretical fit to our data using E-g(T) = E-g(273 K) - (8.8 x 10(-4)T(2))/(483 + T) + 0.088 (Varshni empirical formula) and E-g(T) = E-g(273 K)-0.231447/[exp(362/T)-1] + 0.082 relations. It has been found that data can be fitted accurately after adding a factor similar to 0.08 in above equations. Debye temperature (483 K) and Einstein temperature (362 K) in the respective equations are found mutually in good agreement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The strain evolution of a GaN layer grown on a high- temperature AlN interlayer with varying AlN thickness by metalorganic chemical vapour deposition is investigated. In the growth process, the growth strain changes from compression to tension in the top GaN layer, and the thickness at which the compressive- to- tensile strain transition takes place is strongly influenced by the thickness of the AlN interlayer. It is confirmed from the x- ray diffraction results that the AlN interlayer has a remarkable effect on introducing relative compressive strain to the top GaN layer. The strain transition process during the growth of the top GaN layer can be explained by the threading dislocation inclination in the top GaN layer. Adjusting the AlN interlayer thickness could change the density of the threading dislocations in the top GaN layer and then change the stress evolution during the top GaN layer's growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The circular photogalvanic effect (CPGE) of the two-dimensional electron gas (2DEG) in Al0.25Ga0.75N/GaN heterostructures induced by infrared radiation has been investigated under uniaxial strain. The observed photocurrent consists of the superposition of the CPGE and the linear photogalvanic effect currents, both of which are up to 10(-2) nA. The amplitude of the CPGE current increases linearly with additional strain and is enhanced by 18.6% with a strain of 2.2x10(-3). Based on the experimental results, the contribution of bulk-inversion asymmetry (BIA) and structure-inversion asymmetry (SIA) spin splitting of the 2DEG to the CPGE current in the heterostructures is separated, and the ratio of SIA and BIA terms is estimated to be about 13.2, indicating that the SIA is the dominant mechanism to induce the k-linear spin splitting of the subbands in the triangular quantum well at AlxGa1-xN/GaN heterointerfaces. (C) 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The admixture of linear and circular photogalvanic effects and (CPGEs) in AlxGa1-xN/GaN heterostructures has been investigated quantitatively by near-infrared irradiation at room temperature. The spin-based photocurrent that the authors have observed solidly indicates the sizable spin-orbital interaction of the two-dimensional electron gas in the heterostructures. Further analysis shows consistency between studies by optical and magnetic (Shubnikov de-Haas) measurements on the spin-orbital coupling effects among different AlxGa1-xN/GaN heterostructures, indicating that the CPGE measurement is a good way to investigate the spin splitting and the spin polarization in semiconductors. (C) 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GaN epilayers have been deposited on silicon-on-insulator (SOI) and bulk silicon substrates. The stress transition thickness and the initial compressive stress of a GaN epilayer on the SOI substrate are larger than those on the bulk silicon substrate, as shown in in situ stress measurement results. It is mainly due to the difference of the three-dimensional island density and the threading dislocation density in the GaN layer. It can increase the compressive stress in the initial stage of growth of the GaN layer, and helps to offset the tensile stress generated by the lattice mismatch.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Six-period 4 nm GaN/10 nm AlxGa1-xN superlattices with different Al mole fractions x were prepared on (0001) sapphire substrates by low-temperature metal-organic chemical vapor deposition. The linear electro-optic (Pockels) effect was studied by a polarization-maintaining fiber-optical Mach-Zehnder interferometer system with an incident light wavelength of 1.55 mu m. The measured electro-optic coefficients, gamma(13)=5.60 +/- 0.18 pm/V, gamma(33)=19.24 +/- 1.21 pm/V (for sample 1, x=0.3), and gamma(13)=3.09 +/- 0.48 pm/V, gamma(33)=8.94 +/- 0.36 pm/V (for sample 2, x=0.1), respectively, are about ten times larger than those of GaN bulk material. The enhancement effect in GaN/AlxGa1-xN superlattice can be attributed to the large built-in field at the interfaces, depending on the mole fraction of Al. (C) 2007 American Institute of Physics.