1000 resultados para Courtright, Ray
Resumo:
In this paper we propose a new method for measuring the thickness of the GaN epilayer, by using the ratio of the integrated intensity of the GaN epilayer X-ray diffraction peaks to that of the sapphire substrate ones. This ratio shows a linear dependence on the GaN epilayer thickness up to 2 mum. The new method is more accurate and convenient than those of using the relationship between the integrated intensity of GaN epilayer diffraction peaks and the GaN thickness. Besides, it can eliminate the absorption effect of the GaN epilayer.
Resumo:
In order to understand the growth feature of GaN on GaAs (0 0 1) substrates grown by metalorganic chemical vapor deposition (MOCVD), the crystallinity of GaN buffer layers with different thicknesses was investigated by using double crystal X-ray diffraction (DCXRD) measurements. The XRD results showed that the buffer layers consist of predominantly hexagonal GaN (h-GaN) and its content increases with buffer layer thickness. The nominal GaN (111) reflections with chi at 54.74degrees can be detected easily, while (0 0 2) reflections are rather weak. The integrated intensity of reflections from (111) planes is 4-6 times that of (0 0 2) reflections. Possible explanations are presented. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
A new method of measuring the thickness of GaN epilayers on sapphire (0 0 0 1) substrates by using double crystal X-ray diffraction was proposed. The ratio of the integrated intensity between the GaN epilayer and the sapphire substrate showed a linear relationship with the GaN epilayer thickness up to 2.12 mum. It is practical and convenient to measure the GaN epilayer thickness using this ratio, and can mostly eliminate the effect of the reabsorption, the extinction and other scattering factors of the GaN epilayers. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
A model for analyzing point defects in compound crystals was improved. Based on this modified model, a method for measuring Mn content in GaMnAs was established. A technique for eliminating the zero-drift-error was also established in the experiments of X-ray diffraction. With these methods, the Mn content in GaMnAs single crystals fabricated by the ion-beam epitaxy system was analyzed.
Resumo:
Thermal-induced interdiffusion in InAs/GaAs quantum dot superlattices is studied by high-resolution x-ray diffraction rocking curve and photoluminescence techniques. With increasing annealing temperatures, up to 300 meV a blueshift of the emission peak position and down to 16.6 meV a narrowing of the line width are found in the photoluminescence spectra, and respective intensity of the higher-order satellite peaks to lower-order ones in the x-ray rocking curves decreases. Dynamical theory is employed to simulate the measured x-ray diffraction data. Excellent agreement between the experimental curves and the simulations is achieved when the composition, thickness and stress variations caused by interdiffusion are taken into account. It is found that the significant In-Ga intermixing occurs even in the as-grown InAs/GaAs quantum dots. The estimated diffusion coefficient is 1.8 x 10(-17) cm(2) (.) s(-1) at 650 degreesC, 3.2 x 10(-17) cm(2 .) s(-1) at 750 degreesC, and 1.2 x 10(-14) cm(2 .) s(-1) at 850 degreesC.
Resumo:
Being an established qualitative method for investigating presence of additional phases in single crystal materials, X-ray diffraction has been used widely to characterize their structural qualities and to improve the preparation techniques. Here quantitative X-ray diffraction analysis is described which takes into account diffraction geometry and multiplicity factors. Using double-crystal X-ray four-circle diffractometer, pole figures of cubic (002), {111} and hexagonal {10 (1) over bar0} and reciprocal space mapping were measured to investigate the structural characters of mixed phases and to obtain their diffraction geometry and multiplicity factors. The fractions of cubic twins and hexagonal inclusions were calculated by the integrated intensities of rocking curves of cubic (002), cubic twin {111}, hexagonal {10 (1) over bar0} and hexagonal {10 (1) over bar1}. Without multiplicity factors, the calculated results are portions of mixed phases in only one {111} plane of cubic GaN. Diffraction geometry factor can eliminate the effects of omega and X angles on the irradiated surface areas for different scattered planes. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The distribution of mixed phases and its dependence on the polarity of cubic GaN epilayers are investigated by conventional X-ray pole figure and grazing incident diffraction (GID) pole figure. The hexagonal inclusions and cubic twins can be classified into two portions: one is formed with strict crystalline orientations, the other with crystalline misorientations. The former can be measured by conventional pole figures which reveal that the density of lamellate hexagonal grains and cubic twins located on (1 1 1)(Ga) and ((1) over bar (1) over bar1)(Ga) along [1 (1) over bar 0] direction are higher than those on ((1) over bar 1 1), and (1 (1) over bar 1)(N) along [110] direction. However, the low signals from tiny mixed phases with crystalline misorientations, detected by GID pole figures, distribute in a larger phi region near the [1 1 0] and [(1) over bar (1) over bar 0] directions with much weaker intensity, and in a smaller phi region near the [1 (1) over bar 0] and [(1) over bar 1 0] directions with slightly stronger intensity. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
On the basis of integrated intensity of rocking curves, the multiplicity factor and the diffraction geometry factor for single crystal X-ray diffraction (XRD) analysis were proposed and a general formula for calculating the content of mixed phases was obtained. With a multifunction four-circle X-ray double-crystal diffractometer, pole figures of cubic (002), {111} and hexagonal {1010} and reciprocal space mapping were measured to investigate the distributive character of mixed phases and to obtain their multiplicity factors and diffraction geometry factors. The contents of cubic twins and hexagonal inclusions were calculated by the integrated intensities of rocking curves of cubic (002), cubic twin {111}, hexagonal {1010} and {1011}.
Resumo:
A Ge/Si(0 0 1) multilayer structure is investigated by cross-sectional transmission electron microscopy, atomic force microscopy and double crystal X-lay diffraction. We find that the multilayer-structure-related satellite peaks in the rocking curve exhibit a similar nonuniform broadening and rye fit the zero-order peak with two Lorentz lineshapes. The ratio of the integrated intensity of two peaks is approximately equal with the anal ratio of the top Ge layer deposited between the areas that are and are not occupied by islands. It proves the existence of vertical-aligned island columns from the viewpoint of macroscopic dimension. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Large area (25 mm(2)) silicon drift detectors and detector arrays (5x5) have been designed, simulated, and fabricated for X-ray spectroscopy. On the anode side, the hexagonal drift detector was designed with self-biasing spiral cathode rings (p(+)) of fixed resistance between rings and with a grounded guard anode to separate surface current from the anode current. Two designs have been used for the P-side: symmetric self-biasing spiral cathode rings (p(+)) and a uniform backside p(+) implant. Only 3 to 5 electrodes are needed to bias the detector plus an anode for signal collection. With graded electrical potential, a sub-nanoamper anode current, and a very small anode capacitance, an initial FWHM of 1.3 keV, without optimization of all parameters, has been obtained for 5.9 keV Fe-55 X-ray at RT using a uniform backside detector.
Resumo:
We report on the characterization of thermally induced interdiffusion in InAs/GaAs quantum-dot superlattices with high-resolution x-ray diffraction and photoluminescence techniques. The dynamical theory is employed to simulate the measured x-ray diffraction rocking curves of the InAs/GaAs quantum-dot superlattices annealed at different temperatures. Excellent agreement between the experimental curves and the simulations is achieved when the composition, thickness, and stress variations caused by interdiffusion are taken in account. It is found that the significant In-Ga intermixing occurs even in the as-grown InAs/GaAs quantum dots. The diffusion coefficients at different temperatures are estimated. (C) 2000 American Institute of Physics. [S0003-6951(00)02440-2].
Resumo:
An X-ray diffraction method, estimating the strain relaxation in an ultrathin layer, has been discussed by using kinematic and dynamical X-ray diffraction (XRD) theory. The characteristic parameter Delta Omega, used as the criterion of the strain relaxation in ultrathin layers, is deduced theoretically. It reveals that Delta Omega should be independent of the layer thickness in a coherently strained layer. By this method, we characterized our ultrathin GaNxAs1-x samples with N contents up to 5%. XRD measurements show that our GaNxAs1-x layers are coherently strained on GaAs even for such a large amount of N. Furthermore, a series of GaNxAs1-x samples with same N contents but different layer thicknesses were also characterized. It was found that the critical thickness (L-c) of GaNAs in the GaAs/GaNAs/GaAs structures determined by XRD measurement was 10 times smaller than the theoretical predictions based on the Matthews and Blakeslee model. This result was also confirmed by in situ observation of reflection high-energy electron diffraction (RHEED) and photoluminescence (PL) measurements. RHEED observation showed that the growth mode of GaNAs layer changed from 2D- to 3D-mode as the layer thickness exceeded L-c. PL measurements showed that the optical properties of GaNAs layers deteriorated rapidly as the layer thickness exceeded L-c. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Cubic GaN was grown on GaAs(100) by low pressure metal organic chemical vapor deposition (MOCVD). X-ray diffraction, scanning electron microscope (SEM) and photoluminescence (PL) spectra were performed to characterize the quality of the GaN film. The PL spectra of cubic GaN thin films being thicker than 1.5 mu m were reported. Triple-crystal diffraction to analyze orientation distributions and strain of the thin films was also demonstrated.
Resumo:
Periodicity fluctuations of layer thickness and composition in a superlattice not only decrease the intensity, they also broaden the width of the satellite peaks in the x-ray diffraction pattern. In this letter, we develop a method that is dependent on the width of satellite peaks to assess periodicity fluctuations of a superlattice quickly. A linear relation of the magnitude of fluctuations, peak width and peak order has been derived from x-ray diffraction kinematical theory. By means of this method, periodicity fluctuations in strained (GaNAs)(1)(GaAs)(m) superlattices grown on GaAs substrates by molecular beam epitaxy have been studied. Distinct satellite peaks indicate that the superlattices are of high quality. The N composition of 0.25 and its fluctuation of 20% in a strained GaNxAs1-x monolayer are obtained from simulations of the measured diffraction pattern. The x-ray simulations and in situ observation results of reflection high-energy electron diffraction are in good agreement. (C) 1999 American Institute of Physics. [S0003-6951(99)00828-1].
Resumo:
We presented a series of symmetric double crystal X-ray diffraction (DCXD) measurements, (0 0 4), (2 2 0) and (2 - 2 0) diffraction, to investigate the strain relaxation in an InAs film grown on a GaAs(0 0 1) substrate. The strain tensor and rotation tensor were calculated according to the DCXD results. It is found that the misfit strain is relaxed nearly completely and the strain relaxation caused a triclinic deformation in the epilayer. The lattice parameter along the [1 1 0] direction is a little longer than that along the [1 - 1 0] direction. Furthermore, a significant tilt, 0.2 degrees, towards the [1 1 0] direction while a very slight one: 0.002 degrees, towards [1 - 1 0] direction were discussed. This anisotropic strain relaxation is attributed to the asymmetric distribution of misfit dislocations, which is also indicated by the variation of the full-width at half-maximum (FWHM) of (0 0 4) diffraction along four azimuth angles. (C) 1998 Elsevier Science B.V. All rights reserved.