115 resultados para T02 R09 NWP


Relevância:

10.00% 10.00%

Publicador:

Resumo:

探讨了一种适用于我国自主研发的数值天气预报模式软件GRAPES的不完全LU(ILU)分解预条件子。针对GRAPES模式所特有的具有对角优势结构的赫姆霍兹方程系数矩阵,提出了一种有效的ILU分解方案,并将分解得到的预条件子应用到模式核心的动力积分计算迭代算法中,从而达到加速算法收敛,提高模式软件整体性能的目的。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

温度跃层是反映海洋温度场的重要物理特性指标,对水下通讯、潜艇活动及渔业养殖、捕捞等有重要影响。本文利用中国科学院海洋研究所“中国海洋科学数据库”在中国近海及西北太平洋(110ºE-140ºE,10ºN-40ºN)的多年历史资料(1930-2002年,510143站次),基于一种改进的温跃层判定方法,分析了该海域温跃层特征量的时空分布状况。同时利用Princeton Ocean Model(POM),对中国近海,特别是东南沿海的水文结构进行了模拟,研究了海洋水文环境对逆温跃层的影响。最后根据历史海温观测资料,利用EOF分解统计技术,提出了一种适于我国近海及毗邻海域,基于现场有限层实测海温数据,快速重构海洋水温垂直结构的统计预报方法,以达到对现场温跃层的快速估计。 历史资料分析结果表明,受太阳辐射和风应力的影响,20°N以北研究海域,温跃层季节变化明显,夏季温跃层最浅、最强,冬季相反,温跃层厚度的相位明显滞后于其他变量,其在春季最薄、秋季最厚。12月份到翌年3月份,渤、黄及东海西岸,呈无跃层结构,西北太平洋部分海域从1月到3月份,也基本无跃层结构。在黄海西和东岸以及台湾海峡附近的浅滩海域,由于风力搅拌和潮混合作用,温跃层出现概率常年较低。夏季,海水层化现象在近海陆架海域得到了加强,陆架海域温跃层强度季节性变化幅度(0.31°C/m)明显大于深水区(约0.05°C/m),而前者温跃层深度和厚度的季节性变化幅度小于后者。20°N以南研究海域,温跃层季节变化不明显。逆温跃层主要出现在冬、春季节(10月-翌年5月)。受长江冲淡水和台湾暖流的影响,东南沿海区域逆温跃层持续时间最长,出现概率最大,而在山东半岛北及东沿岸、朝鲜半岛西及北岸,逆温跃层消长过程似乎和黄海暖流有关。多温跃层结构常年出现于北赤道流及对马暖流区。在黑潮入侵黄、东、南海的区域,多温跃层呈现明显不同的季节变化。在黄海中部,春季多温跃层发生概率高于夏季和秋季,在东海西部,多跃层主要出现在夏季,在南海北部,冬季和春季多温跃层发生概率大于夏季和秋季。这些变化可能主要受海表面温度变化和风力驱动的表层流的影响。 利用Princeton Ocean Model(POM),对中国东南沿海逆温跃层结构进行了模拟,模拟结果显示,长江冲淡水的季节性变化以及夏季转向与实际结果符合较好,基本再现了渤、黄、东海海域主要的环流、温盐场以及逆温跃层的分布特征和季节变化。通过数值实验发现,若无长江、黄河淡水输入,则在整个研究海域基本无逆温跃层出现,因此陆源淡水可能是河口附近逆温跃层出现的基本因素之一。长江以及暖流(黑潮和台湾暖流)流量的增加,均可在不同程度上使逆温跃层出现概率及强度、深度和厚度增加,且暖流的影响更加明显。长江对东南沿海逆温跃层的出现,特别是秋季到冬季初期,有明显的影响,使长江口海域逆温跃层位置偏向东南。暖流对于中国东南沿海的逆温跃层结构,特别是初春时期,有较大影响,使长江口海域的逆温跃层位置向东北偏移。 通过对温跃层长期变化分析得出,黄海冷水团区域,夏季温跃层强度存在3.8年左右的年际变化及18.9年左右的年代际变化,此变化可能主要表现为对当年夏季和前冬东亚地区大气气温的热力响应。东海冷涡区域,夏季温跃层强度存在3.7年的年际变化,在El Nino年为正的强度异常,其可能主要受局地气旋式大气环流变异所影响。谱分析同时表明,该海域夏季温跃层强度还存在33.2年的年代际变化,上世纪70年代中期,温跃层强度由弱转强,而此变化可能与黑潮流量的年代际变化有关。 海洋水温垂直结构的统计预报结果显示,EOF分解的前四个主分量即能够解释原空间点温度距平总方差的95%以上,以海洋表层附近观测资料求解的特征系数推断温度垂直结构分布的结果最稳定。利用东海陆架区、南海深水区和台湾周边海域三个不同区域的实测CTD样本廓线资料,对重构模型的检验结果表明,重构与实测廓线的相关程度超过95%的置信水平。三个区重构与实测温度廓线值的平均误差分别为0.69℃,0.52℃,1.18℃,平均重构廓线误差小于平均气候偏差,统计模式可以很好的估算温度廓线垂直结构。东海陆架海区温度垂直重构廓线与CTD观测廓线获得的温跃层结果对比表明,重构温跃层上界、下界深度和强度的平均绝对误差分别为1.51m、1.36m和0.17℃/m,它们的平均相对误差分别为24.7%、8.9%和22.6%,虽然温跃层深度和强度的平均相对误差较大,但其绝对误差量值较小。而在南海海区,模型重构温跃层上界、下界和强度的平均绝对预报误差分别为4.1m、27.7m和0.007℃/m,它们的平均相对误差分别为16.1%、16.8%和9.5%,重构温跃层各特征值的平均相对误差都在20%以内。虽然南海区温跃层下界深度平均绝对预报误差较大,但相对于温跃层下界深度的空间尺度变化而言(平均温跃层下界深度为168m),平均相对误差仅为16.8%。因此说模型重构的温度廓线可以达到对我国陆架海域、深水区温跃层的较好估算。 基于对历史水文温度廓线观测资料的分析及自主温跃层统计预报模型,研制了实时可利用微机简单、快捷地进行温跃层估算及查询的可视化系统,这是迄今进行大范围海域温跃层统计与实时预报研究的较系统成果。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Resumen en inglés

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Resumen en inglés. Se recogen páginas web relacionadas con la temática del artículo

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Resumen en inglés

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Resumen en inglés

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Resumen en inglés

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Resumen en inglés

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Resumen en inglés

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Resumen en inglés

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Resumen en inglés

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El National Writing Project (NWP) es una red de comunidades de aprendizaje de docentes que funciona en Estados Unidos. Todas sus sedes tienen en común un conjunto de prácticas sociales características, que se rigen por la convicción de que cuando los maestros comparten y critican entre ellos sus mejores ideas y estrategias, los estudiantes se benefician de ello. El artículo presenta las prácticas sociales de trabajo de esta red.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Convective Storm Initiation Project (CSIP) is an international project to understand precisely where, when, and how convective clouds form and develop into showers in the mainly maritime environment of southern England. A major aim of CSIP is to compare the results of the very high resolution Met Office weather forecasting model with detailed observations of the early stages of convective clouds and to use the newly gained understanding to improve the predictions of the model. A large array of ground-based instruments plus two instrumented aircraft, from the U.K. National Centre for Atmospheric Science (NCAS) and the German Institute for Meteorology and Climate Research (IMK), Karlsruhe, were deployed in southern England, over an area centered on the meteorological radars at Chilbolton, during the summers of 2004 and 2005. In addition to a variety of ground-based remote-sensing instruments, numerous rawin-sondes were released at one- to two-hourly intervals from six closely spaced sites. The Met Office weather radar network and Meteosat satellite imagery were used to provide context for the observations made by the instruments deployed during CSIP. This article presents an overview of the CSIP field campaign and examples from CSIP of the types of convective initiation phenomena that are typical in the United Kingdom. It shows the way in which certain kinds of observational data are able to reveal these phenomena and gives an explanation of how the analyses of data from the field campaign will be used in the development of an improved very high resolution NWP model for operational use.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is a pressing need for good rainfall data for the African continent both for humanitarian and climatological purposes. Given the sparseness of ground-based observations, one source of rainfall information is Numerical Weather Prediction (NWP) model outputs. The aim of this article is to investigate the quality of two NWP products using Ethiopia as a test case. The two products evaluated are the ERA-40 and NCEP reanalysis rainfall products. Spatial, seasonal and interannual variability of rainfall have been evaluated for Kiremt (JJAS) and Belg (FMAM) seasons at a spatial scale that reflects the local variability of the rainfall climate using a method which makes optimum use of sparse gauge validation data. We found that the spatial pattern of the rainfall climatology is captured well by both models especially for the main rainy season Kiremt. However, both models tend to overestimate the mean rainfall in the northwest, west and central regions but underestimate in the south and east. The overestimation is greater for NCEP in Belg season and greater for ERA-40 in Kiremt Season. ERA-40 captures the annual cycle over most of the country better than NCEP, but strongly exaggerates the Kiremt peak in the northwest and west. The overestimation in Kiremt appears to have been reduced since the assimilation of satellite data increased around 1990. For both models the interannual variability is less well captured than the spatial and seasonal variability. Copyright © 2008 Royal Meteorological Society