982 resultados para Space Geometry. Manipulatives. Distance Calculation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

La Geometría del Espacio es una rama de la Matemática que estudia las propieda-des y medidas de figurasque se relacionan con la mayoría de objetos tridimensionales que tenemos a nuestro alrededor; por esto nuestro trabajo titulado “Elaboración de una guía y material didáctico de la Geometría del Espacio para el Laboratorio de Matemática de la carrera de Matemáticas y Física de la Universidad de Cuenca” da lugar a una nueva estrategia que puede utilizar el docente en el proceso de enseñanza-aprendizaje de esta asignatura. En el capítulo uno de nuestro trabajo de graduación se analizan los aspectos generales de la educación así como las corrientes pedagógicas que están presentes dentro del proceso educativo, para luego hablar de la didáctica y la importancia de trabajar con material concreto en el área de Matemática, específicamente en la Geometría del Espacio así como los recursos que son óptimos para trabajar esta asignatura. En el capítulo dos, se demuestra mediante un muestreo no probabilístico que existe dificultad en la comprensión de los contenidos de la Geometría del Espacio y que una buena opción para desarrollar el proceso de enseñanza-aprendizaje sobre esta asignatura es la utilización de material concreto y de una guía didáctica que facilite la comprensión de los contenidos. Por último en el capítulo tres se presenta un conjunto de diez prácticas sobre pla-nos y sólidos, las cuales, siguen los pasos que exige una práctica de laboratorio innovadora, de una manera ordenada y secuencial para reforzar el proceso de enseñanza-aprendizaje.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre em Arquitectura com Especialização em Urbanismo, apresentada na Universidade de Lisboa - Faculdade de Arquitectura.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In vielen Industriezweigen, zum Beispiel in der Automobilindustrie, werden Digitale Versuchsmodelle (Digital MockUps) eingesetzt, um die Konstruktion und die Funktion eines Produkts am virtuellen Prototypen zu überprüfen. Ein Anwendungsfall ist dabei die Überprüfung von Sicherheitsabständen einzelner Bauteile, die sogenannte Abstandsanalyse. Ingenieure ermitteln dabei für bestimmte Bauteile, ob diese in ihrer Ruhelage sowie während einer Bewegung einen vorgegeben Sicherheitsabstand zu den umgebenden Bauteilen einhalten. Unterschreiten Bauteile den Sicherheitsabstand, so muss deren Form oder Lage verändert werden. Dazu ist es wichtig, die Bereiche der Bauteile, welche den Sicherhabstand verletzen, genau zu kennen. rnrnIn dieser Arbeit präsentieren wir eine Lösung zur Echtzeitberechnung aller den Sicherheitsabstand unterschreitenden Bereiche zwischen zwei geometrischen Objekten. Die Objekte sind dabei jeweils als Menge von Primitiven (z.B. Dreiecken) gegeben. Für jeden Zeitpunkt, in dem eine Transformation auf eines der Objekte angewendet wird, berechnen wir die Menge aller den Sicherheitsabstand unterschreitenden Primitive und bezeichnen diese als die Menge aller toleranzverletzenden Primitive. Wir präsentieren in dieser Arbeit eine ganzheitliche Lösung, welche sich in die folgenden drei großen Themengebiete unterteilen lässt.rnrnIm ersten Teil dieser Arbeit untersuchen wir Algorithmen, die für zwei Dreiecke überprüfen, ob diese toleranzverletzend sind. Hierfür präsentieren wir verschiedene Ansätze für Dreiecks-Dreiecks Toleranztests und zeigen, dass spezielle Toleranztests deutlich performanter sind als bisher verwendete Abstandsberechnungen. Im Fokus unserer Arbeit steht dabei die Entwicklung eines neuartigen Toleranztests, welcher im Dualraum arbeitet. In all unseren Benchmarks zur Berechnung aller toleranzverletzenden Primitive beweist sich unser Ansatz im dualen Raum immer als der Performanteste.rnrnDer zweite Teil dieser Arbeit befasst sich mit Datenstrukturen und Algorithmen zur Echtzeitberechnung aller toleranzverletzenden Primitive zwischen zwei geometrischen Objekten. Wir entwickeln eine kombinierte Datenstruktur, die sich aus einer flachen hierarchischen Datenstruktur und mehreren Uniform Grids zusammensetzt. Um effiziente Laufzeiten zu gewährleisten ist es vor allem wichtig, den geforderten Sicherheitsabstand sinnvoll im Design der Datenstrukturen und der Anfragealgorithmen zu beachten. Wir präsentieren hierzu Lösungen, die die Menge der zu testenden Paare von Primitiven schnell bestimmen. Darüber hinaus entwickeln wir Strategien, wie Primitive als toleranzverletzend erkannt werden können, ohne einen aufwändigen Primitiv-Primitiv Toleranztest zu berechnen. In unseren Benchmarks zeigen wir, dass wir mit unseren Lösungen in der Lage sind, in Echtzeit alle toleranzverletzenden Primitive zwischen zwei komplexen geometrischen Objekten, bestehend aus jeweils vielen hunderttausend Primitiven, zu berechnen. rnrnIm dritten Teil präsentieren wir eine neuartige, speicheroptimierte Datenstruktur zur Verwaltung der Zellinhalte der zuvor verwendeten Uniform Grids. Wir bezeichnen diese Datenstruktur als Shrubs. Bisherige Ansätze zur Speicheroptimierung von Uniform Grids beziehen sich vor allem auf Hashing Methoden. Diese reduzieren aber nicht den Speicherverbrauch der Zellinhalte. In unserem Anwendungsfall haben benachbarte Zellen oft ähnliche Inhalte. Unser Ansatz ist in der Lage, den Speicherbedarf der Zellinhalte eines Uniform Grids, basierend auf den redundanten Zellinhalten, verlustlos auf ein fünftel der bisherigen Größe zu komprimieren und zur Laufzeit zu dekomprimieren.rnrnAbschießend zeigen wir, wie unsere Lösung zur Berechnung aller toleranzverletzenden Primitive Anwendung in der Praxis finden kann. Neben der reinen Abstandsanalyse zeigen wir Anwendungen für verschiedene Problemstellungen der Pfadplanung.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Compositional data analysis motivated the introduction of a complete Euclidean structure in the simplex of D parts. This was based on the early work of J. Aitchison (1986) and completed recently when Aitchinson distance in the simplex was associated with an inner product and orthonormal bases were identified (Aitchison and others, 2002; Egozcue and others, 2003). A partition of the support of a random variable generates a composition by assigning the probability of each interval to a part of the composition. One can imagine that the partition can be refined and the probability density would represent a kind of continuous composition of probabilities in a simplex of infinitely many parts. This intuitive idea would lead to a Hilbert-space of probability densitiesby generalizing the Aitchison geometry for compositions in the simplex into the set probability densities

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Compositional data analysis motivated the introduction of a complete Euclidean structure in the simplex of D parts. This was based on the early work of J. Aitchison (1986) and completed recently when Aitchinson distance in the simplex was associated with an inner product and orthonormal bases were identified (Aitchison and others, 2002; Egozcue and others, 2003). A partition of the support of a random variable generates a composition by assigning the probability of each interval to a part of the composition. One can imagine that the partition can be refined and the probability density would represent a kind of continuous composition of probabilities in a simplex of infinitely many parts. This intuitive idea would lead to a Hilbert-space of probability densities by generalizing the Aitchison geometry for compositions in the simplex into the set probability densities

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A novel metric comparison of the appendicular skeleton (fore and hind limb) of different vertebrates using the Compositional Data Analysis (CDA) methodological approach it’s presented. 355 specimens belonging in various taxa of Dinosauria (Sauropodomorpha, Theropoda, Ornithischia and Aves) and Mammalia (Prothotheria, Metatheria and Eutheria) were analyzed with CDA. A special focus has been put on Sauropodomorpha dinosaurs and the Aitchinson distance has been used as a measure of disparity in limb elements proportions to infer some aspects of functional morphology

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The objective of this study was to evaluate children's respiratory patterns in the mixed dentition, by means of acoustic rhinometry, and its relation to the upper arch width development. Fifty patients were examined, 25 females and 25 males with mean age of eight years and seven months. All of them were submitted to acoustic rhinometry and upper and lower arch impressions to obtain plaster models. The upper arch analysis was accomplished by measuring the interdental transverse distance of the upper teeth, deciduous canines (measurement 1), deciduous first molars (measurement 2), deciduous second molars (measurement 3) and the first molars (measurement 4). The results showed that an increased left nasal cavity area in females means an increased interdental distance of the deciduous first molars and deciduous second molars and an increased interdental distance of the deciduous canines, deciduous first and second molars in males. It was concluded that there is a correlation between the nasal cavity area and the upper arch transverse distance in the anterior and mid maxillary regions for both genders.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A scheme is presented to incorporate a mixed potential integral equation (MPIE) using Michalski's formulation C with the method of moments (MoM) for analyzing the scattering of a plane wave from conducting planar objects buried in a dielectric half-space. The robust complex image method with a two-level approximation is used for the calculation of the Green's functions for the half-space. To further speed up the computation, an interpolation technique for filling the matrix is employed. While the induced current distributions on the object's surface are obtained in the frequency domain, the corresponding time domain responses are calculated via the inverse fast Fourier transform (FFT), The complex natural resonances of targets are then extracted from the late time response using the generalized pencil-of-function (GPOF) method. We investigate the pole trajectories as we vary the distance between strips and the depth and orientation of single, buried strips, The variation from the pole position of a single strip in a homogeneous dielectric medium was only a few percent for most of these parameter variations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A novel metric comparison of the appendicular skeleton (fore and hind limb) ofdifferent vertebrates using the Compositional Data Analysis (CDA) methodologicalapproach it’s presented.355 specimens belonging in various taxa of Dinosauria (Sauropodomorpha, Theropoda,Ornithischia and Aves) and Mammalia (Prothotheria, Metatheria and Eutheria) wereanalyzed with CDA.A special focus has been put on Sauropodomorpha dinosaurs and the Aitchinsondistance has been used as a measure of disparity in limb elements proportions to infersome aspects of functional morphology

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Aitchison vector space structure for the simplex is generalized to a Hilbert space structure A2(P) for distributions and likelihoods on arbitrary spaces. Centralnotations of statistics, such as Information or Likelihood, can be identified in the algebraical structure of A2(P) and their corresponding notions in compositional data analysis, such as Aitchison distance or centered log ratio transform.In this way very elaborated aspects of mathematical statistics can be understoodeasily in the light of a simple vector space structure and of compositional data analysis. E.g. combination of statistical information such as Bayesian updating,combination of likelihood and robust M-estimation functions are simple additions/perturbations in A2(Pprior). Weighting observations corresponds to a weightedaddition of the corresponding evidence.Likelihood based statistics for general exponential families turns out to have aparticularly easy interpretation in terms of A2(P). Regular exponential families formfinite dimensional linear subspaces of A2(P) and they correspond to finite dimensionalsubspaces formed by their posterior in the dual information space A2(Pprior).The Aitchison norm can identified with mean Fisher information. The closing constant itself is identified with a generalization of the cummulant function and shown to be Kullback Leiblers directed information. Fisher information is the local geometry of the manifold induced by the A2(P) derivative of the Kullback Leibler information and the space A2(P) can therefore be seen as the tangential geometry of statistical inference at the distribution P.The discussion of A2(P) valued random variables, such as estimation functionsor likelihoods, give a further interpretation of Fisher information as the expected squared norm of evidence and a scale free understanding of unbiased reasoning

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tässä diplomityössä tutkitaan dispariteettikartan laskennan tehostamista interpoloimalla. Kolmiomittausta käyttämällä stereokuvasta muodostetaan ensin harva dispariteettikartta, jonka jälkeen koko kuvan kattava dispariteettikartta muodostetaan interpoloimalla. Kolmiomittausta varten täytyy tietää samaa reaalimaailman pistettä vastaavat kuvapisteet molemmissa kameroissa. Huolimatta siitä, että vastaavien pisteiden hakualue voidaan pienentää kahdesta ulottuvuudesta yhteen ulottuvuuteen käyttämällä esimerkiksi epipolaarista geometriaa, on laskennallisesti tehokkaampaa määrittää osa dispariteetikartasta interpoloimalla, kuin etsiä vastaavia kuvapisteitä stereokuvista. Myöskin johtuen stereonäköjärjestelmän kameroiden välisestä etäisyydestä, kaikki kuvien pisteet eivät löydy toisesta kuvasta. Näin ollen on mahdotonta määrittää koko kuvan kattavaa dispariteettikartaa pelkästään vastaavista pisteistä. Vastaavien pisteiden etsimiseen tässä työssä käytetään dynaamista ohjelmointia sekä korrelaatiomenetelmää. Reaalimaailman pinnat ovat yleisesti ottaen jatkuvia, joten geometrisessä mielessä on perusteltua approksimoida kuvien esittämiä pintoja interpoloimalla. On myöskin olemassa tieteellistä näyttöä, jonkamukaan ihmisen stereonäkö interpoloi objektien pintoja.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The implementation of local geodetic networks for georeferencing of rural properties has become a requirement after publication of the Georeferencing Technical Standard by INCRA. According to this standard, the maximum distance of baselines to GNSS L1 receivers is of 20 km. Besides the length of the baseline, the geometry and the number of geodetic control stations are other factors to be considered in the implementation of geodetic networks. Thus, this research aimed to examine the influence of baseline lengths higher than the regulated limit of 20 km, the geometry and the number of control stations on quality of local geodetic networks for georeferencing, and also to demonstrate the importance of using specific tests to evaluate the solution of ambiguities and on the quality of the adjustment. The results indicated that the increasing number of control stations has improved the quality of the network, the geometry has not influenced on the quality and the baseline length has influenced on the quality; however, lengths higher than 20 km has not interrupted the implementation, with GPS L1 receiver, of the local geodetic network for the purpose of georeferencing. Also, the use of different statistical tests, both for the evaluation of the resolution of ambiguities and for the adjustment, have enabled greater clearness in analyzing the results, which allow that unsuitable observations may be eliminated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Aitchison vector space structure for the simplex is generalized to a Hilbert space structure A2(P) for distributions and likelihoods on arbitrary spaces. Central notations of statistics, such as Information or Likelihood, can be identified in the algebraical structure of A2(P) and their corresponding notions in compositional data analysis, such as Aitchison distance or centered log ratio transform. In this way very elaborated aspects of mathematical statistics can be understood easily in the light of a simple vector space structure and of compositional data analysis. E.g. combination of statistical information such as Bayesian updating, combination of likelihood and robust M-estimation functions are simple additions/ perturbations in A2(Pprior). Weighting observations corresponds to a weighted addition of the corresponding evidence. Likelihood based statistics for general exponential families turns out to have a particularly easy interpretation in terms of A2(P). Regular exponential families form finite dimensional linear subspaces of A2(P) and they correspond to finite dimensional subspaces formed by their posterior in the dual information space A2(Pprior). The Aitchison norm can identified with mean Fisher information. The closing constant itself is identified with a generalization of the cummulant function and shown to be Kullback Leiblers directed information. Fisher information is the local geometry of the manifold induced by the A2(P) derivative of the Kullback Leibler information and the space A2(P) can therefore be seen as the tangential geometry of statistical inference at the distribution P. The discussion of A2(P) valued random variables, such as estimation functions or likelihoods, give a further interpretation of Fisher information as the expected squared norm of evidence and a scale free understanding of unbiased reasoning

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We study the geometry of 3-manifolds generically embedded in R(n) by means of the analysis of the singularities of the distance-squared and height functions on them. We describe the local structure of the discriminant (associated to the distribution of asymptotic directions), the ridges and the flat ridges.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We generalize a previous work on Dirac eigenvalues as dynamical variables of Euclidean supergravity. The most general set of constraints on the curvatures of the tangent bundle and on the spinor bundle of the space-time manifold, under which space-time admits Dirac eigenvalues as observables, are derived.