1000 resultados para Ordens Numéricas
Resumo:
Verificar si el sistema de clasificación que tiene como base las taxonomías numéricas, puede ser utilizada con objetos propios del ámbito de la investigación educativa. Se compone de 25 profesores de segundo ciclo de EGB pertenecientes a dos colegios religiosos, masculino y femenino, un colegio nacional mixto, un colegio subvencionado al 100 por ciento, un colegio nacional masculino y una academia masculina no subvencionada, sitos en barrios residenciales, periféricos y rurales de la provincia de Valencia. Realización de grabaciones de las clases con un emisor minúsculo y sin observador, siendo el tiempo de grabación de quince minutos por profesor, establecidos de forma aleatoria. El diseño experimental se fundamenta en las categorías de Flanders para el análisis de la interacción verbal. 35 grabaciones de clases de cualquier materia de segundo ciclo de EGB. Matriz de 25 x 10 para conseguir la taxonomía numérica. Análisis factorial. Mediante la matriz de observación el tiempo se reparte en cuatro categorías: la cuatro formula preguntas, la cinco expone y explica, la ocho respuestas del alumno, la diez silencio. En el análisis de fenogramas datos tipificados se determinan seis grupos diferenciados: 1. Los alumnos intervienen aportando ideas más de lo normal; 2. Espacios o silencios superiores al normal; 3. Los profesores usan más tiempo para la exposición que la media relativa; 4. Mayor incidencia en cuanto a preguntas y respuestas; 5. Gran utilización de tiempo en respuestas de los alumnos y 6. Intervención mínima. En el análisis de fenogramas por centros: hay unión del colegio primero y segundo, ambos religiosos y privados, y unión entre el cuarto y tercero, el primero urbano periférico y el segundo rural, ambos nacionales. Existe una alta correlación entre las categorías tres, acepta o utiliza ideas del alumno, y la nueve, el alumno inicia el discurso. Correlaciones negativas entre la cuatro, formula preguntas y la cinco, expone y explica. El sistema de categorías de Flanders reproduce y codifica con exactitud la dinámica verbal del aula. La actividad verbal se reduce en casi un 90 por ciento a explicaciones, preguntas y respuestas de los alumnos y silencios. El sistema de taxonomías numéricas permite realizar clasificaciones jerárquicas, en base a criterios matemáticos con elementos de las Ciencias de la Educación.
Resumo:
Resumen de la revista
Resumo:
Determinar la comprensión que subyace a la operación de dividir en niños de diferentes edades, en distintas situaciones experimentales. 63 niños elegidos al azar de un colegio público de Madrid. Se establecen tres grupos, el primero formado por niños de tercero de Primaria; el segundo, de Cuarto de Primaria y, el tercero, de Quinto.. La administración de las pruebas se lleva a cabo en tres momentos distintos. Primero se pasa la tarea de plantear problemas, de forma colectiva y dura unos 30 minutos. Se presentan tres expresiones numéricas a partir de las cuales el sujeto debe generar un problema verbal. Una vez hecho ésto, tienen que ejecutar el algoritmo. En las dos tareas restantes, los sujetos se entrevistan individualmente en sesiones de aproximadamente 30 minutos. Las pruebas las lee el experimentador en voz alta, sin limitaciones de tiempo y la misión del sujeto consiste en proporcionar una respuesta escrita y una explicación siempre verbal del proceso de solución. En segundo lugar, se presenta la tarea de resolver problemas estándar, con dos categorías distintas de problemas de división: problemas de grupos iguales y problemas de comparación. Finalmente, se muestra la tarea de resolver problemas realistas que consta de dos categorías de problemas. Problemas de grupos iguales y comparación, que a su vez hacen referencia a la división partitiva y a la división de medida. En concreto, se analiza la ejecución correcta o incorrecta de tales procedimientos y si las respuestas verbales dadas son realistas o no. Tres cuadernillos donde se describen las distintas pruebas y un lápiz para anotar las respuestas. Análisis cuantitativo (ANOVA), Análisis cualitativo. A medida que el nivel escolar de los niños aumenta, su rendimiento también lo hace en todas las tareas como resultado de la escolarización y de la experiencia con las matemáticas. En general, el curso de los mayores obtiene mejores resultados, seguido por los de cuarto de Primaria y, por último, el grupo de los más pequeños. En cuanto a la estructura semántica de los problemas se observa que ésta afecta al rendimiento de los sujeto, siendo en general los problemas de grupos iguales más sencillos que los problemas de comparación. En general, no se aprecian diferencias entre los tipos de estrategias utilizadas y el tipo de errores cometidos teniendo en cuenta la estructura semántica del problema y el tipo de división. Sin embargo, si se encuentran diferencias entre los grupos experimentales con respecto a la naturaleza de las estrategias utilizadas para resolver distintas tareas.
Resumo:
Resumen basado en el de la publicación
Resumo:
Se estudia la comprensión del significado del signo y la emergencia en estudiantes de primaria. Se determina el desarrollo del pensamiento relacional en la resolución de igualdades numéricas. Se realizan cinco sesiones de entre quince y cincuenta minutos a lo largo de días diferentes. El objetivo principal es estudiar la manera en que los estudiantes relacionan los distintos conceptos que se les plantean en los problemas.
Resumo:
Cuaderno de trabajo para el área de comprensión verbal dirigido a niños del ciclo superior de educación infantil y primaria. Dividido en siete partes destinadas a familiarizar al niño con algunas operaciones aritméticas básicas a través de numerosos ejercicios comprensivos cuyas soluciones se presentan al final del cuadernillo: estrategias de cálculo mental, conceptos básicos, signos matemáticos, seriaciones numéricas y resolución de problemas. Se acompañan de presentaciones variadas y atractivas para estimular el interés del niño y evitar que se aburra. Se ofrecen breves normas para el seguimiento del proceso de aprendizaje del niño.
Resumo:
Resumen tomado de la publicación. IV número monográfico con el título: VII Seminario de Investigación y pensamiento numérico y algebraico (PNA).
Resumo:
Resumen tomado de la publicación
Resumo:
Resumen basado en el de la publicación
Resumo:
Resumen basado en el de la publicación
Resumo:
La preparación didáctica de los maestros referente a la enseñanza de conceptos numéricos, supone uno de los objetivos primordiales en la formación de maestros en la educación matemática. En esta ponencia se recogen la organización y los contenidos de las asignaturas en la materia de educación matemática, se establece su estructura, se definen sus objetivos... De esta forma se llegan a resolver dudas sobre las estructuras numéricas que debe tener un maestro y qué aspectos de dichos conocimientos hay que trabajar en los centros de formación de maestros.
Resumo:
O objetivo deste trabalho consiste no desenvolvimento de alguns avanços, teóricos e numéricos, no método LTSN visando implementar a primeira versão de um código computacional, para resolver a equação de transporte utilizando formulação LTSN na forma de multigrupos em geometria plana. Os avanços para o método LTSN estão fundamentados na solução iterativa para o sistema de equações que constituem as condições de contorno, um novo método para a busca do valor de keff baseado no método da bissecção. O desenvolvimento desta metodologia permitiu realizar o calculo muito rápido com altas ordens de quadratura e com esforço computacional muito reduzido. Juntos os avanços matemáticos e numéricos, implementados nesta primeira versão de um código fortran, tal como nos códigos já conhecidos permite solucionar a equação de transporte na forma de multigrupos, tanto para o cálculo direto como para o adjunto, com fontes arbitrárias. Este código utiliza de recursos computacionais da linguagem FORTRAN e as bibliotecas LAPACK, para a otimização de seus algoritmos, facilitando o desenvolvimento futuro. A validação deste trabalho foi feita utilizando dois problemas: um relativo ao fluxo angular e escalar, tanto para o fluxo direto como para o adjunto, cuja importância está relacionada com busca de convergência, relação de reciprocidade e comprovação da solução adjunta, e; um problema de criticalidade, para comprovar a eficácia do algoritmo de busca iterativa de keff e espessura crítica. Com este trabalho se abrem muitas possibilidades tanto teóricas como numéricas a investigar com o método LTSN.
Resumo:
O objetivo deste trabalho consiste em aplicar o método LTSn em cálculos de parâmetros críticos como Keff, espessura e concentração atômica e obtenção do fiuxo escalar, da potência específica e do enriquecimento do combustível em placa plana homogenea e heterogênea, considerando modelo multigrupo e em diversas ordens de quadraturas. O método LTSn consiste na aplicação da transformada de Laplace em um conjunto de equações~de ordenadas discretas gerado pela aproximação SN, resultando em um sistema de equações algébricas simbólicas dependentes do parâmetro complexo s e reconstrução dos fluxos angulares pela técnica de expansão de Heaviside. A aplicação do método LTSn reduz a soluçào de um problema de autovalor, a solução de uma equação transcedental, possibilitando a obtenção de parâmetros críticos. Simulações numéricas são apresentadas.
Resumo:
O principal objetivo dessa tese consiste em determinar uma solução numéricada equação bidimensional do transporte de nêutrons para elevadas ordens de quadratura angular. Diagonalizando a matriz de transporte LTSN bidimensional , construímos dois algoritmos que se diferenciam pela forma de representar os termos de fuga transversal, que surgem nas equações LTSN integradas transversalmente. Esses termos no método LTSN2D − Diag são expressos como combinação linear dos autovetores multiplicados por exponenciais dos respectivos autovalores. No método LTSN2D − DiagExp os termos de fuga transversal são representados por uma função exponencial com constante de decaimento heuristicamente identificada com parâmetros materiais característicos do meio. A análise epectral desenvolvida permite realizar a diagonalização. Um estudo sobre o condicionamento é feito e também associamos um número de condicionamento ao termo de fuga transversal. Definimos os erros no fluxo aproximado e na fórmula da quadratura, e estabelecemos uma relação entre eles. A convergência ocorre com condições de fronteira e quadratura angular adequadas. Apresentamos os resultados numéricos gerados pelos novos métodos LTSN2D − Diag e LTSN2D − DiagExp para elevadas ordens de quadratura angular para um problema ilustrativo e comparamos com resultados disponíveis na literatura.
Resumo:
Neste trabalho, desenvolve-se um método “multigrid” para a aproximação angular da solução da equação de transporte de partículas em uma placa plana, baseado na formulação LTSN com dependência contínua na variável angular. Para tanto, aplica-se a formulação LTSN sobre o conjunto de equações SN para determinar o fluxo angular de partículas nas N direções discretas referentes a uma malha grossa (N pequeno) e em seguida, usando os fluxos conhecidos, aplica-se a formulação LTSN com dependência angular contínua, para avaliar o fluxo angular nas M direções discretas referentes a uma malha fina (M grande). São apresentadas simulações numéricas que ilustram a capacidade desse método, denotado por MGLTSMN , no que diz respeito à redução do esforço computacional na aproximação da solução para problemas que requerem elevadas ordens de quadratura e alto grau de anisotropia.