989 resultados para Locally finite groups


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Exam questions and solutions in LaTex

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Exam questions and solutions in PDF

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Exam questions and solutions in LaTex

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An integration by parts formula is derived for the first order differential operator corresponding to the action of translations on the space of locally finite simple configurations of infinitely many points on Rd. As reference measures, tempered grand canonical Gibbs measures are considered corresponding to a non-constant non-smooth intensity (one-body potential) and translation invariant potentials fulfilling the usual conditions. It is proven that such Gibbs measures fulfill the intuitive integration by parts formula if and only if the action of the translation is not broken for this particular measure. The latter is automatically fulfilled in the high temperature and low intensity regime.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider an equilibrium birth and death type process for a particle system in infinite volume, the latter is described by the space of all locally finite point configurations on Rd. These Glauber type dynamics are Markov processes constructed for pre-given reversible measures. A representation for the ``carré du champ'' and ``second carré du champ'' for the associate infinitesimal generators L are calculated in infinite volume and for a large class of functions in a generalized sense. The corresponding coercivity identity is derived and explicit sufficient conditions for the appearance and bounds for the size of the spectral gap of L are given. These techniques are applied to Glauber dynamics associated to Gibbs measure and conditions are derived extending all previous known results and, in particular, potentials with negative parts can now be treated. The high temperature regime is extended essentially and potentials with non-trivial negative part can be included. Furthermore, a special class of potentials is defined for which the size of the spectral gap is as least as large as for the free system and, surprisingly, the spectral gap is independent of the activity. This type of potentials should not show any phase transition for a given temperature at any activity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We give a list of all possible schemes for performing amino acid and codon assignments in algebraic models for the genetic code, which are consistent with a few simple symmetry principles, in accordance with the spirit of the algebraic approach to the evolution of the genetic code proposed by Hornos and Hornos. Our results are complete in the sense of covering all the algebraic models that arise within this approach, whether based on Lie groups/Lie algebras, on Lie superalgebras or on finite groups.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Let G be a finite group, F a field, FG the group ring of G over F, and J(FG) the Jacobson radical of FG. Using a result of Berman and Witt, we give a method to determine the structure of the center of FG/J(FG), provided that F satisfies a field theoretical condition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this article, we give a method to compute the rank of the subgroup of central units of ZG, for a finite metacyclic group, G, by means of Q-classes and R-classes. Then we construct a multiplicatively independent set u subset of Z(U(ZC(p,q))) and by applying our results, we prove that u generates a subgroup of finite index.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, we show for which odd-dimensional homotopy spherical space forms the Borsuk-Ulam theorem holds. These spaces are the quotient of a homotopy odd-dimensional sphere by a free action of a finite group. Also, the types of these spaces which admit a free involution are characterized. The case of even-dimensional homotopy spherical space forms is basically known.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Weyl-Wigner prescription for quantization on Euclidean phase spaces makes essential use of Fourier duality. The extension of this property to more general phase spaces requires the use of Kac algebras, which provide the necessary background for the implementation of Fourier duality on general locally compact groups. Kac algebras - and the duality they incorporate - are consequently examined as candidates for a general quantization framework extending the usual formalism. Using as a test case the simplest nontrivial phase space, the half-plane, it is shown how the structures present in the complete-plane case must be modified. Traces, for example, must be replaced by their noncommutative generalizations - weights - and the correspondence embodied in the Weyl-Wigner formalism is no longer complete. Provided the underlying algebraic structure is suitably adapted to each case, Fourier duality is shown to be indeed a very powerful guide to the quantization of general physical systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Let G be a group such that, for any subgroup H of G, every automorphism of H can be extended to an automorphism of G. Such a group G is said to be of injective type. The finite abelian groups of injective type are precisely the quasi-injective groups. We prove that a finite non-abelian group G of injective type has even order. If, furthermore, G is also quasi-injective, then we prove that G = K x B, with B a quasi-injective abelian group of odd order and either K = Q(8) (the quaternion group of order 8) or K = Dih(A), a dihedral group on a quasi-injective abelian group A of odd order coprime with the order of B. We give a description of the supersoluble finite groups of injective type whose Sylow 2-subgroup are abelian showing that these groups are, in general, not quasi-injective. In particular, the characterisation of such groups is reduced to that of finite 2-groups that are of injective type. We give several restrictions on the latter. We also show that the alternating group A(5) is of injective type but that the binary icosahedral group SL(2, 5) is not.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Interactive theorem provers (ITP for short) are tools whose final aim is to certify proofs written by human beings. To reach that objective they have to fill the gap between the high level language used by humans for communicating and reasoning about mathematics and the lower level language that a machine is able to “understand” and process. The user perceives this gap in terms of missing features or inefficiencies. The developer tries to accommodate the user requests without increasing the already high complexity of these applications. We believe that satisfactory solutions can only come from a strong synergy between users and developers. We devoted most part of our PHD designing and developing the Matita interactive theorem prover. The software was born in the computer science department of the University of Bologna as the result of composing together all the technologies developed by the HELM team (to which we belong) for the MoWGLI project. The MoWGLI project aimed at giving accessibility through the web to the libraries of formalised mathematics of various interactive theorem provers, taking Coq as the main test case. The motivations for giving life to a new ITP are: • study the architecture of these tools, with the aim of understanding the source of their complexity • exploit such a knowledge to experiment new solutions that, for backward compatibility reasons, would be hard (if not impossible) to test on a widely used system like Coq. Matita is based on the Curry-Howard isomorphism, adopting the Calculus of Inductive Constructions (CIC) as its logical foundation. Proof objects are thus, at some extent, compatible with the ones produced with the Coq ITP, that is itself able to import and process the ones generated using Matita. Although the systems have a lot in common, they share no code at all, and even most of the algorithmic solutions are different. The thesis is composed of two parts where we respectively describe our experience as a user and a developer of interactive provers. In particular, the first part is based on two different formalisation experiences: • our internship in the Mathematical Components team (INRIA), that is formalising the finite group theory required to attack the Feit Thompson Theorem. To tackle this result, giving an effective classification of finite groups of odd order, the team adopts the SSReflect Coq extension, developed by Georges Gonthier for the proof of the four colours theorem. • our collaboration at the D.A.M.A. Project, whose goal is the formalisation of abstract measure theory in Matita leading to a constructive proof of Lebesgue’s Dominated Convergence Theorem. The most notable issues we faced, analysed in this part of the thesis, are the following: the difficulties arising when using “black box” automation in large formalisations; the impossibility for a user (especially a newcomer) to master the context of a library of already formalised results; the uncomfortable big step execution of proof commands historically adopted in ITPs; the difficult encoding of mathematical structures with a notion of inheritance in a type theory without subtyping like CIC. In the second part of the manuscript many of these issues will be analysed with the looking glasses of an ITP developer, describing the solutions we adopted in the implementation of Matita to solve these problems: integrated searching facilities to assist the user in handling large libraries of formalised results; a small step execution semantic for proof commands; a flexible implementation of coercive subtyping allowing multiple inheritance with shared substructures; automatic tactics, integrated with the searching facilities, that generates proof commands (and not only proof objects, usually kept hidden to the user) one of which specifically designed to be user driven.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Given a reductive group G acting on an affine scheme X over C and a Hilbert function h: Irr G → N_0, we construct the moduli space M_Ө(X) of Ө-stable (G,h)-constellations on X, which is a common generalisation of the invariant Hilbert scheme after Alexeev and Brion and the moduli space of Ө-stable G-constellations for finite groups G introduced by Craw and Ishii. Our construction of a morphism M_Ө(X) → X//G makes this moduli space a candidate for a resolution of singularities of the quotient X//G. Furthermore, we determine the invariant Hilbert scheme of the zero fibre of the moment map of an action of Sl_2 on (C²)⁶ as one of the first examples of invariant Hilbert schemes with multiplicities. While doing this, we present a general procedure for the realisation of such calculations. We also consider questions of smoothness and connectedness and thereby show that our Hilbert scheme gives a resolution of singularities of the symplectic reduction of the action.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study existence of random elements with partially specified distributions. The technique relies on the existence of a positive ex-tension for linear functionals accompanied by additional conditions that ensure the regularity of the extension needed for interpreting it as a probability measure. It is shown in which case the extens ion can be chosen to possess some invariance properties. The results are applied to the existence of point processes with given correlation measure and random closed sets with given two-point covering function or contact distribution function. It is shown that the regularity condition can be efficiently checked in many cases in order to ensure that the obtained point processes are indeed locally finite and random sets have closed realisations.