EXTENSION OF AUTOMORPHISMS OF SUBGROUPS


Autoria(s): Bastos, G. G.; Jespers, E.; Juriaans, S. O.; Silva, A. De A. E.
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

05/11/2013

05/11/2013

2012

Resumo

Let G be a group such that, for any subgroup H of G, every automorphism of H can be extended to an automorphism of G. Such a group G is said to be of injective type. The finite abelian groups of injective type are precisely the quasi-injective groups. We prove that a finite non-abelian group G of injective type has even order. If, furthermore, G is also quasi-injective, then we prove that G = K x B, with B a quasi-injective abelian group of odd order and either K = Q(8) (the quaternion group of order 8) or K = Dih(A), a dihedral group on a quasi-injective abelian group A of odd order coprime with the order of B. We give a description of the supersoluble finite groups of injective type whose Sylow 2-subgroup are abelian showing that these groups are, in general, not quasi-injective. In particular, the characterisation of such groups is reduced to that of finite 2-groups that are of injective type. We give several restrictions on the latter. We also show that the alternating group A(5) is of injective type but that the binary icosahedral group SL(2, 5) is not.

Onderzoeksraad of Vrije Universiteit Brussel

Onderzoeksraad of Vrije Universiteit Brussel

Departamento de Matematica of the Universidade Federal of Paraiba, Brazil

Departamento de Matematica of the Universidade Federal of Paraiba, Brazil

CNPq (Brazil)

CNPq-Brazil

FAPESP-Brazil [Proc. 2008/57930-1]

FAPESP (Brazil)

Fonds voor Wetenschappelijk Onderzoek (Belgium)

Fonds voor Wetenschappelijk Onderzoek (Belgium)

Identificador

GLASGOW MATHEMATICAL JOURNAL, NEW YORK, v. 54, n. 2, supl. 1, Part 6, pp. 371-380, MAY, 2012

0017-0895

http://www.producao.usp.br/handle/BDPI/41065

10.1017/S0017089512000031

http://dx.doi.org/10.1017/S0017089512000031

Idioma(s)

eng

Publicador

CAMBRIDGE UNIV PRESS

NEW YORK

Relação

GLASGOW MATHEMATICAL JOURNAL

Direitos

closedAccess

Copyright CAMBRIDGE UNIV PRESS

Palavras-Chave #MATHEMATICS
Tipo

article

original article

publishedVersion