Fourier duality as a quantization principle
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
27/05/2014
27/05/2014
01/02/1997
|
Resumo |
The Weyl-Wigner prescription for quantization on Euclidean phase spaces makes essential use of Fourier duality. The extension of this property to more general phase spaces requires the use of Kac algebras, which provide the necessary background for the implementation of Fourier duality on general locally compact groups. Kac algebras - and the duality they incorporate - are consequently examined as candidates for a general quantization framework extending the usual formalism. Using as a test case the simplest nontrivial phase space, the half-plane, it is shown how the structures present in the complete-plane case must be modified. Traces, for example, must be replaced by their noncommutative generalizations - weights - and the correspondence embodied in the Weyl-Wigner formalism is no longer complete. Provided the underlying algebraic structure is suitably adapted to each case, Fourier duality is shown to be indeed a very powerful guide to the quantization of general physical systems. |
Formato |
345-383 |
Identificador |
http://dx.doi.org/10.1007/BF02435738 International Journal of Theoretical Physics, v. 36, n. 2, p. 345-383, 1997. 0020-7748 http://hdl.handle.net/11449/65029 10.1007/BF02435738 WOS:A1997WE29500002 2-s2.0-0031541083 |
Idioma(s) |
eng |
Relação |
International Journal of Theoretical Physics |
Direitos |
closedAccess |
Tipo |
info:eu-repo/semantics/article |