709 resultados para Galium arsenide
Resumo:
Reducing crop row spacing and delaying time of weed emergence may provide crops a competitive edge over weeds. Field experiments were conducted to evaluate the effects of crop row spacing (11, 15, and 23-cm) and weed emergence time (0, 20, 35, 45, 55, and 60 days after wheat emergence; DAWE) on Galium aparine and Lepidium sativum growth and wheat yield losses. Season-long weed-free and crop-free treatments were also established to compare wheat yield and weed growth, respectively. Row spacing and weed emergence time significantly affected the growth of both weed species and wheat grain yields. For both weed species, the maximum plant height, shoot biomass, and seed production were observed in the crop-free plots, and delayed emergence decreased these variables. In weed-crop competition plots, maximum weed growth was observed when weeds emerged simultaneously with the crop in rows spaced 23-cm apart. Less growth of both weed species was observed in narrow row spacing (11-cm) of wheat as compared with wider rows (15 and 23-cm). These weed species produced less than 5 seeds plant-1 in 11-cm wheat rows when they emerged at 60 DAWE. Presence of weeds in the crop especially at early stages was devastating for wheat yields. Therefore, maximum grain yield (4.91tha-1) was recorded in the weed-free treatment at 11-cm row spacing. Delay in time of weed emergence and narrow row spacing reduced weed growth and seed production and enhanced wheat grain yield, suggesting that these strategies could contribute to weed management in wheat.
Resumo:
The photoquenching of EL2 in semi‐insulating gallium arsenide is seen to be a complex process, where at low temperatures the initial slow quenching is followed by a switch to fast quenching. A possible explanation involving lattice strain mediated cooperative structural relaxation arising out of transition to the metastable state is proposed.
Resumo:
High dose Mn was implanted into semi-insulating GaAs substrate to fabricate embedded ferromagnetic Mn-Ga binary particles by mass-analyzed dual ion beam deposit system at room temperature. The properties of as-implanted and annealed samples were measured with X-ray diffraction, high-resolution X-ray diffraction to characterize the structural changes. New phase formed after high temperature annealing. Sample surface image was observed with atomic force microscopy. All the samples showed ferromagnetic behaviour at room temperature. There were some differences between the hysteresis loops of as-implanted and annealed samples as well as the cluster size of the latter was much larger than that of the former through the surface morphology. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Among the branches of astronomy, radio astronomy is unique in that it spans the largest portion of the electromagnetic spectrum, e.g., from about 10 MHz to 300 GHz. On the other hand, due to scientific priorities as well as technological limitations, radio astronomy receivers have traditionally covered only about an octave bandwidth. This approach of "one specialized receiver for one primary science goal" is, however, not only becoming too expensive for next-generation radio telescopes comprising thousands of small antennas, but also is inadequate to answer some of the scientific questions of today which require simultaneous coverage of very large bandwidths.
This thesis presents significant improvements on the state of the art of two key receiver components in pursuit of decade-bandwidth radio astronomy: 1) reflector feed antennas; 2) low-noise amplifiers on compound-semiconductor technologies. The first part of this thesis introduces the quadruple-ridged flared horn, a flexible, dual linear-polarization reflector feed antenna that achieves 5:1-7:1 frequency bandwidths while maintaining near-constant beamwidth. The horn is unique in that it is the only wideband feed antenna suitable for radio astronomy that: 1) can be designed to have nominal 10 dB beamwidth between 30 and 150 degrees; 2) requires one single-ended 50 Ohm low-noise amplifier per polarization. Design, analysis, and measurements of several quad-ridged horns are presented to demonstrate its feasibility and flexibility.
The second part of the thesis focuses on modeling and measurements of discrete high-electron mobility transistors (HEMTs) and their applications in wideband, extremely low-noise amplifiers. The transistors and microwave monolithic integrated circuit low-noise amplifiers described herein have been fabricated on two state-of-the-art HEMT processes: 1) 35 nm indium phosphide; 2) 70 nm gallium arsenide. DC and microwave performance of transistors from both processes at room and cryogenic temperatures are included, as well as first-reported measurements of detailed noise characterization of the sub-micron HEMTs at both temperatures. Design and measurements of two low-noise amplifiers covering 1--20 and 8—50 GHz fabricated on both processes are also provided, which show that the 1--20 GHz amplifier improves the state of the art in cryogenic noise and bandwidth, while the 8--50 GHz amplifier achieves noise performance only slightly worse than the best published results but does so with nearly a decade bandwidth.
Resumo:
A giant magnetocaloric effect was found in series of Mn1-xCoxAs films epitaxied on GaAs (001). The maximum magnetic entropy change caused by a magnetic field of 4 T is as large as 25 J/kg K around room temperature, which is about twice the value of pure MnAs film. The observed small thermal hysteresis is more suitable for practical application. Growing of layered Mn1-xCoxAs films with Co concentration changing gradually may draw layered active magnetic regenerator refrigerators closer to practical application. Our experimental result may provide the possibility for the combination of magnetocaloric effect and microelectronic circuitry.
Resumo:
The ultrafast dynamics of in-plane four-state magnetization reversal from compressively strained (Ga,Mn)As film was investigated by magneto-optical Kerr rotation measurement. The magnetization reversal signal was dramatically suppressed upon pumping, and recovered slowly with time evolution. The low switching field H-c1 increased abruptly from 30 to 108 G on the first several picoseconds and recovered back to the value before optical pumping within about 500 ps, whereas the high switching field H-c2 did not change obviously upon pumping, implying a domain-wall nucleation/propagation at low fields and coherent magnetization rotation at high fields in the magnetization reversal process.
Resumo:
We report on the investigation of electron spin quantum beats at room temperature in GaAsN thin films by time-resolved Kerr rotation technique. The measurement of the quantum beats, which originate from the Larmor precession of electron spins in external transverse magnetic field, yields an accurate determination of the conduction electron g factor. We show that the g factor of GaAs1-xNx thin films is significantly changed by the introduction of a small nitrogen fraction.
Resumo:
Fe films with the different thicknesses were grown on c(4x4) reconstructed GaAs (001) surfaces at low temperature by molecular-beam epitaxy. Well-ordered bcc structural Fe epitaxial films are confirmed by x-ray diffraction patterns and high-resolution cross-sectional transmission electron microscopy images. A large lattice expansion perpendicular to the surface in Fe film is observed. In-plane uniaxial magnetic anisotropy is determined by the difference between magnetizing energy along [110] and [110] directions, and the constant of interfacial uniaxial magnetic anisotropy is calculated to be 1.02x10(-4) J m(-2). We also find that magnetic anisotropy is not obviously influenced after in situ annealing, but in-plane strain is completely changed.
Resumo:
The well-width dependence of in-plane optical anisotropy (IPOA) in (001) GaAs/AlxGa1-xAs quantum wells induced by in-plane uniaxial strain and interface asymmetry has been studied comprehensively. Theoretical calculations show that the IPOA induced by in-plane uniaxial strain and interface asymmetry exhibits much different well-width dependence. The strain-induced IPOA is inversely proportional to the energy spacing between heavy- and light-hole subbands, so it increases with the well width. However, the interface-related IPOA is mainly determined by the probability that the heavy- and light-holes appear at the interfaces, so it decreases with the well width. Reflectance difference spectroscopy has been carried out to measure the IPOA of (001) GaAs/AlxGa1-xAs quantum wells with different well widths. Strain- and interface-induced IPOA have been distinguished by using a stress apparatus, and good agreement with the theoretical prediction is obtained. The anisotropic interface potential parameters are also determined. In addition, the energy shift between the interface- and strain-induced 1H1E reflectance difference (RD) structures, and the deviation of the 1L1E RD signal away from the prediction of the calculation model have been discussed.
Resumo:
The effects of annealing on the optical properties of InAs/GaAs quantum dots (QDs) grown under different conditions by metalorganic chemical vapor deposition (MOCVD) are studied. A lower QD growth rate leads to an earlier and faster decrease of QD photoluminescence (PL) intensity with increasing annealing temperature. which is proposed to be related to the increased QD two-dimensional (2D)-three-dimensional (3D) transition critical layer thickness at low QD growth rate. High-quality GaAs cap layers grown at high temperature and a low deposition rate are shown to decrease the blueshift of the QDs' emission wavelength significantly during in-situ I h annealing experiments, which is important for the fabrication of long-wavelength InAs/GaAs QD lasers by MOCVD technique. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We report experimental results of the effect of Ka-band microwave on the spin dynamics of electrons in a two-dimensional electron system (2DES) in a GaAs/Al0.35Ga0.65As heterostructure via time-resolved Kerr rotation measurements. While the microwave reduces the transverse spin lifetime of electrons in the bulk GaAs, it significantly increases that in the 2DES, from 745 to 1213 ps, when its frequency is close to the Zeeman splitting of the electrons in the magnetic field. Such a microwave-enhanced spin lifetime is ascribed to the microwave-induced electron scattering which leads to a "motional narrowing" of spins via D'yakonov-Perel' mechanism.
Resumo:
Circular dichromatic absorption difference spectroscopy is developed to measure the spin diffusion dynamics of electrons in bulk n-GaAs. This spectroscopy has higher detection sensitivity over homodyne detection of spin-grating-diffracted signal. A model to describe circular dichromatic absorption difference signal is derived and used to fit experimental signal to retrieve decaying rate of spin gratings. A spin diffusion constant of D-s=201 +/- 25 cm(2)/s for bulk n-GaAs has been measured at room temperature using this technique and is close to electron diffusion constant (D-c), which is much different from the case in GaAs quantum wells where D-s is markedly less than D-c.
Resumo:
We measured the carrier concentration distribution of gradient-doped GaAs/GqAlAs epilayers grown by molecular beam epitaxy before and after annealing at 600 degrees C, using electrochemical capacitance voltage profiling, to investigate the internal variation of transmission-mode GaAs photocathodes arising from the annealing process. The results show that the carrier concentration increased after annealing. As a result, the total band-bending energy in the gradient-doped GaAs emission layer increased by 25.24% after annealing, which improves the pbotoexcited electron movement toward the surface. On the other hand, the annealing process resulted in a worse carrier concentration discrepancy between the GaAs and the GaAlAs, which causes a lower back interface potential barrier, decreasing the amount of high-energy photoelectrons. (C) 2009 Optical Society of America
Resumo:
We have fabricated a set of samples of zincblende Mn-rich Mn(Ga)As clusters embedded in GaAs matrices by annealing (Ga,Mn)As films with different nominal Mn content at 650 degrees C. For the samples with Mn content no more than 4.5%, the Curie temperature reaches nearly 360 K. However, when Mn content is higher than 5.4%, the samples exhibit a spin-glass-like behavior. We suggest that these different magnetic properties are caused by the competing result of dipolar and Ruderman-Kittel-Kasuya-Yosida interaction among clusters. The low-temperature spin dynamic behavior, especially the relaxation effect, shows the extreme creeping effect which is reflected by the time constant tau of similar to 10(11) s at 10 K. We explain this phenomenon by the hierarchical model based on the mean-field approach. We also explain the memory effect by the relationship between the correlation function and the susceptibility.