988 resultados para Factorial
Resumo:
In previous work (Olshausen & Field 1996), an algorithm was described for learning linear sparse codes which, when trained on natural images, produces a set of basis functions that are spatially localized, oriented, and bandpass (i.e., wavelet-like). This note shows how the algorithm may be interpreted within a maximum-likelihood framework. Several useful insights emerge from this connection: it makes explicit the relation to statistical independence (i.e., factorial coding), it shows a formal relationship to the algorithm of Bell and Sejnowski (1995), and it suggests how to adapt parameters that were previously fixed.
Resumo:
We present a framework for learning in hidden Markov models with distributed state representations. Within this framework, we derive a learning algorithm based on the Expectation--Maximization (EM) procedure for maximum likelihood estimation. Analogous to the standard Baum-Welch update rules, the M-step of our algorithm is exact and can be solved analytically. However, due to the combinatorial nature of the hidden state representation, the exact E-step is intractable. A simple and tractable mean field approximation is derived. Empirical results on a set of problems suggest that both the mean field approximation and Gibbs sampling are viable alternatives to the computationally expensive exact algorithm.
Resumo:
Resumen tomado de la publicación
Resumo:
Resumen tomado de la publicaci??n
Resumo:
It is possible to obtain habitat suitability maps using several applications like "Biomapper" v. 3.1.5 (http://www2.unil.ch/biomapper) or the "adehabitat" library v. 1.2.1, developed to be used within R program (http//www.R-project.org)
Resumo:
Resumen tomado de la publicaci??n
Resumo:
Resumen tomado de la publicaci??n
Resumo:
Resumen tomado de la publicación
Resumo:
Resumen tomado de la publicaci??n
Resumo:
Resumen tomado de la publicaci??n
Resumo:
Resumen tomado de la publicaci??n
Resumo:
Resumen tomado de la publicaci??n
Resumo:
Resumen tomado de la publicaci??n
Resumo:
Resumen tomado de la publicaci??n
Resumo:
El Zimbardo Time Perspective Inventory – ZTPI (Zimbardo & Boyd, 1999) es una escala compuesta por cinco factores (pasado positivo, pasado negativo, presente hedonista, presente fatalista y futuro) que evalúa la perspectiva temporal de forma multidimensional superando, de esta forma, una de las limitaciones señaladas en otros instrumentos creados en el pasado. El objetivo de este estudio es analizar la estructura factorial de una versión portuguesa del ZTPI en una muestra de 277 estudiantes universitarios portugueses con edades comprendidas entre los 18 y los 53 años (M = 22, DE = 5.43). Fueron encontrados 5 factores que explican 35.25% de la varianza total. Estos resultados son muy parecidos a los expuestos por Zimbardo y Boyd (1999) en la publicación original del instrumento.