998 resultados para Critical Sobolev Exponent
Resumo:
The system 3-methylpyridine(3MP)+water(H2O)+NaBr has been the subject of an intense scientific debate since the work of Jacob [Phys. Rev. E. 58, 2188 (1988)] and Anisimov [Phys. Rev. Lett. 85, 2336 (2000)]. The crossover critical behavior of this system seemed to show remarkable sensitivity to the weight fraction (X) of the ionic impurity NaBr. In the range X <= 0.10 the system displayed Ising behavior and a pronounced crossover to mean-field behavior in the range 0.10 <= X <= 0.16. A complete mean-field behavior was observed at X=0.17, a result that was later attributed to the existence of long-living nonequilibrium states in this system [Kostko , Phys. Rev. E. 70, 026118 (2004)]. In this paper, we report the near-critical behavior of osmotic susceptibility in the isotopically related ternary system, 3MP+heavy water(D2O)+NaBr. Detailed light-scattering experiments performed at exactly the same NaBr concentrations as investigated by Jacob reveal that the system 3MP+D2O+NaBr shows a simple Ising-type critical behavior with gamma similar or equal to 1.24 and nu similar or equal to 0.63 over the entire NaBr concentration range 0 <= X <= 0.1900. The crossover behavior is predominantly nonmonotonic and is completed well outside the critical domain. An analysis in terms of the effective susceptibility exponent (gamma(eff)) reveals that the crossover behavior is nonmonotonic for 0 <= X <= 0.1793 and tends to become monotonic for X > 0.1793. The correlation length amplitude xi(o), has a value of similar or equal to 2 A for 0.0250 <= X <= 0.1900, whereas for X=0, xi(o)similar or equal to 3.179 A. Since isotopic H -> D substitution is not expected to change the critical behavior of the system, our results support the recent results obtained by Kostko [Phys. Rev. E. 70, 026118 (2004)] that 3MP+H2O+NaBr exhibits universal Ising-type critical behavior typical for other aqueous solutions.
Resumo:
Static magnetization for single crystals of insulating Nd0.85Pb0.15MnO3 and marginally conducting Nd0.70Pb0.30MnO3 has been studied around the ferromagnetic to paramagnetic transition temperature T-C. Results of measurements carried out in the critical range vertical bar(T - T-C)/T-C vertical bar <= 0.1 are reported. Critical exponents beta and gamma for the thermal behaviour of magnetization and susceptibility have been obtained both by modified Arrott plots and the Kouvel-Fisher method. The exponent delta independently obtained from the critical isotherm was found to satisfy the Widom scaling relation delta = gamma/beta + 1. For both compositions the values of exponents are consistent with those expected for isotropic magnets belonging to the Heisenberg universality class with short-range exchange in three dimensions. Correspondingly, the specific heat displays only a cusp-like anomaly at the critical temperature of these crystals which is consistent with an exponent alpha < 0. The results show that the ferromagnetic ordering transition in Nd1-xPbxMnO3 in the composition range 0.15 <= x <= 0.40 is continuous. This mixed-valent manganite displays the conventional properties of a Heisenberg-like ferromagnet, irrespective of the differing transport properties and in spite of low ordering temperatures T-C = 109 and 147.2 K for x = 0.15 and 0.30, respectively.
Resumo:
The electrical resistance of the critical binary liquid system C6H12+(CH3CO)2O is measured both in the pure form and when the system is doped with small amounts (≈ 100 ppm) of H2O impurities. Near Tc, the resistance varies as dR/dT = A1+A2 (T-Tc)-b with b ≈ 0.35. Neither the critical exponent b nor the amplitude ratio A1/A2 are affected by the impurities. A sign reversal of dR/dT is noticed at high temperatures T much greater-than Tc.
Resumo:
The electrical resistance is measured in two binary liquid systems CS2 + CH3NO2 and n-C7H16 + CH3OH in the critical region as a function of frequency from 10 Hz to 100 kHz. The critical exponent b ≈ 0.35 in the singularity of dR/dT α (T - Tc)−b near Tc has no appreciable dependence upon the frequency. Thus any contribution from dielectric dispersion to the critical resistivity is not appreciable. The universal behaviour of the dR/dT anomaly does not seem to be followed in binary liquid systems.
Resumo:
Electrical resistance (R) measurements are reported for ternary mixtures of 3-methylpyridine, water and heavy water as a function of temperature (T) and heavy water content in total water. These mixtures exhibit a limited two-phase region marked by a loop size (ΔT) that goes to zero as the double critical point (DCP) is approached. The measurements scanned the ΔT range 1.010°C less-than-or-equals, slant ΔT less-than-or-equals, slant 77.5°C. The critical exponent (θ), which signifies the divergence of ∂R/∂T, doubles within our experimental uncertainties as the DCP is reached very closely.
Resumo:
We introduce a one-dimensional version of the Kitaev model consisting of spins on a two-legged ladder and characterized by Z(2) invariants on the plaquettes of the ladder. We map the model to a fermionic system and identify the topological sectors associated with different Z2 patterns in terms of fermion occupation numbers. Within these different sectors, we investigate the effect of a linear quench across a quantum critical point. We study the dominant behavior of the system by employing a Landau-Zener-type analysis of the effective Hamiltonian in the low-energy subspace for which the effective quenching can sometimes be non-linear. We show that the quenching leads to a residual energy which scales as a power of the quenching rate, and that the power depends on the topological sectors and their symmetry properties in a non-trivial way. This behavior is consistent with the general theory of quantum quenching, but with the correlation length exponent nu being different in different sectors. Copyright (C) EPLA, 2010
Resumo:
Results of a study of dc magnetization M(T,H), performed on a Nd(0.6)Pb(0.4)MnO(3) single crystal in the temperature range around T(C) (Curie temperature) which embraces the supposed critical region \epsilon\=\T-T(C)\/T(C)less than or equal to0.05 are reported. The magnetic data analyzed in the critical region using the Kouvel-Fisher method give the values for the T(C)=156.47+/-0.06 K and the critical exponents beta=0.374+/-0.006 (from the temperature dependence of magnetization) and gamma=1.329+/-0.003 (from the temperature dependence of initial susceptibility). The critical isotherm M(T(C),H) gives delta=4.54+/-0.10. Thus the scaling law gamma+beta=deltabeta is fulfilled. The critical exponents obey the single scaling equation of state M(H,epsilon)=epsilon(beta)f(+/-)(H/epsilon(beta+gamma)), where f(+) for T>T(C) and f(-) for T
Resumo:
Ga1-xMnxAs films with exceptionally high saturation magnetizations of approximate to 100 emu/cm(3) corresponding to effective Mn concentrations of x(eff)approximate to 0.10 still have a Curie temperature T-C smaller than 195 K contradicting mean-field predictions. The analysis of the critical exponent beta of the remnant magnetization-beta = 0.407(5)-in the framework of the models for disordered/amorphous ferromagnets suggests that this limit on T-C is intrinsic and due to the short range of the ferromagnetic interactions resulting from the small mean-free path of the holes. This result questions the perspective of room-temperature ferromagnetism in highly doped GaMnAs.
Resumo:
Using a phenomenological asymmetric nuclear equation of state, we obtained pressure-density isotherms of the finite nucleus Sn-112 simulated in r-space and in p-space and constructed the nuclear fragments by using the coalescence model. After correlatively analysing the fragments, the signal of critical behavior has been found and critical exponents were also extracted.
Resumo:
We report that the brittle-ductile transition of polymers induced by temperature exhibits critical behavior. When t close to 0, the critical surface to surface interparticle distance (IDc) follows the scaling law: IDc proportional to t(-v) where t = 1 - T/T-BD(m) (T and T-BD(m) are the test temperature and brittle-ductile transition temperature of matrix polymer, respectively) and v = 2/D. It is clear that the scaling exponent v only depends on dimension (D). For 2, 3, and 4 dimension, v = 1, 2/3, and 1/2 respectively. The result indicates that the ID, follows the same scaling law as that of the correlation length (xi), when t approach to zero.
Resumo:
The work presented in this Ph.D thesis was developed in the context of complex network theory, from a statistical physics standpoint. We examine two distinct problems in this research field, taking a special interest in their respective critical properties. In both cases, the emergence of criticality is driven by a local optimization dynamics. Firstly, a recently introduced class of percolation problems that attracted a significant amount of attention from the scientific community, and was quickly followed up by an abundance of other works. Percolation transitions were believed to be continuous, until, recently, an 'explosive' percolation problem was reported to undergo a discontinuous transition, in [93]. The system's evolution is driven by a metropolis-like algorithm, apparently producing a discontinuous jump on the giant component's size at the percolation threshold. This finding was subsequently supported by number of other experimental studies [96, 97, 98, 99, 100, 101]. However, in [1] we have proved that the explosive percolation transition is actually continuous. The discontinuity which was observed in the evolution of the giant component's relative size is explained by the unusual smallness of the corresponding critical exponent, combined with the finiteness of the systems considered in experiments. Therefore, the size of the jump vanishes as the system's size goes to infinity. Additionally, we provide the complete theoretical description of the critical properties for a generalized version of the explosive percolation model [2], as well as a method [3] for a precise calculation of percolation's critical properties from numerical data (useful when exact results are not available). Secondly, we study a network flow optimization model, where the dynamics consists of consecutive mergings and splittings of currents flowing in the network. The current conservation constraint does not impose any particular criterion for the split of current among channels outgoing nodes, allowing us to introduce an asymmetrical rule, observed in several real systems. We solved analytically the dynamic equations describing this model in the high and low current regimes. The solutions found are compared with numerical results, for the two regimes, showing an excellent agreement. Surprisingly, in the low current regime, this model exhibits some features usually associated with continuous phase transitions.
Resumo:
We prove that
∑k,ℓ=1N(nk,nℓ)2α(nknℓ)α≪N2−2α(logN)b(α)
holds for arbitrary integers 1≤n1<⋯
Resumo:
We investigate the combined influence of quenched randomness and dissipation on a quantum critical point with O(N) order-parameter symmetry. Utilizing a strong-disorder renormalization group, we determine the critical behavior in one space dimension exactly. For super-ohmic dissipation, we find a Kosterlitz-Thouless type transition with conventional (power-law) dynamical scaling. The dynamical critical exponent depends on the spectral density of the dissipative baths. We also discuss the Griffiths singularities, and we determine observables.
Resumo:
The power-law size distributions obtained experimentally for neuronal avalanches are an important evidence of criticality in the brain. This evidence is supported by the fact that a critical branching process exhibits the same exponent t~3=2. Models at criticality have been employed to mimic avalanche propagation and explain the statistics observed experimentally. However, a crucial aspect of neuronal recordings has been almost completely neglected in the models: undersampling. While in a typical multielectrode array hundreds of neurons are recorded, in the same area of neuronal tissue tens of thousands of neurons can be found. Here we investigate the consequences of undersampling in models with three different topologies (two-dimensional, small-world and random network) and three different dynamical regimes (subcritical, critical and supercritical). We found that undersampling modifies avalanche size distributions, extinguishing the power laws observed in critical systems. Distributions from subcritical systems are also modified, but the shape of the undersampled distributions is more similar to that of a fully sampled system. Undersampled supercritical systems can recover the general characteristics of the fully sampled version, provided that enough neurons are measured. Undersampling in two-dimensional and small-world networks leads to similar effects, while the random network is insensitive to sampling density due to the lack of a well-defined neighborhood. We conjecture that neuronal avalanches recorded from local field potentials avoid undersampling effects due to the nature of this signal, but the same does not hold for spike avalanches. We conclude that undersampled branching-process-like models in these topologies fail to reproduce the statistics of spike avalanches.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)