61 resultados para ADDER


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Surface electrode switching of 16-electrode wireless EIT is studied using a Radio Frequency (RF) based digital data transmission technique operating with 8 channel encoder/decoder ICs. An electrode switching module is developed the analog multiplexers and switched with 8-bit parallel digital data transferred by transmitter/receiver module developed with radio frequency technology. 8-bit parallel digital data collected from the receiver module are converted to 16-bit digital data by using binary adder circuits and then used for switching the electrodes in opposite current injection protocol. 8-bit parallel digital data are generated using NI USB 6251 DAQ card in LabVIEW software and sent to the transmission module which transmits the digital data bits to the receiver end. Receiver module supplies the parallel digital bits to the binary adder circuits and adder circuit outputs are fed to the multiplexers of the electrode switching module for surface electrode switching. 1 mA, 50 kHz sinusoidal constant current is injected at the phantom boundary using opposite current injection protocol. The boundary potentials developed at the voltage electrodes are measured and studied to assess the wireless data transmission.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

On the basis of signed-digit negabinary representation, parallel two-step addition and one-step subtraction can be performed for arbitrary-length negabinary operands.; The arithmetic is realized by signed logic operations and optically implemented by spatial encoding and decoding techniques. The proposed algorithm and optical system are simple, reliable, and practicable, and they have the property of parallel processing of two-dimensional data. This leads to an efficient design for the optical arithmetic and logic unit. (C) 1997 Optical Society of America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A compact two-step modified-signed-digit arithmetic-logic array processor is proposed. When the reference digits are programmed, both addition and subtraction can be performed by the same binary logic operations regardless of the sign of the input digits. The optical implementation and experimental demonstration with an electron-trapping device are shown. Each digit is encoded by a single pixel, and no polarization is included. Any combinational logic can be easily performed without optoelectronic and electro-optic conversions of the intermediate results. The system is compact, general purpose, simple to align, and has a high signal-to-noise ratio. (C) 1999 Optical Society of America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel, to our knowledge, two-step digit-set-restricted modified signed-digit (MSD) addition-subtraction algorithm is proposed. With the introduction of the reference digits, the operand words are mapped into an intermediate carry word with all digits restricted to the set {(1) over bar, 0} and an intermediate sum word with all digits restricted to the set {0, 1}, which can be summed to form the final result without carry generation. The operation can be performed in parallel by use of binary logic. An optical system that utilizes an electron-trapping device is suggested for accomplishing the required binary logic operations. By programming of the illumination of data arrays, any complex logic operations of multiple variables can be realized without additional temporal latency of the intermediate results. This technique has a high space-bandwidth product and signal-to-noise ratio. The main structure can be stacked to construct a compact optoelectronic MSD adder-subtracter. (C) 1999 Optical Society of America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on the two-step modified signed-digit (MSD) algorithm, we present a one-step algorithm for the parallel addition and subtraction of two MSD numbers. This algorithm is reached by classifying the three neighboring digit pairs into 10 groups and then making a decision on the groups. It has only a look-up truth table, and can be further formulated by eight computation rules. A joint spatial encoding technique is developed to represent both the input data and the computation rules. Furthermore, an optical correlation architecture is suggested to implement the MSD adder in parallel. An experimental demonstration is also given. (C) 1996 Society of Photo-Optical instrumentation Engineers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A two-step digit-set-restricted modified signed-digit (MSD) adder based on symbolic substitution is presented. In the proposed addition algorithm, carry propagation is avoided by using reference digits to restrict the intermediate MSD carry and sum digits into {(1) over bar ,0} and {0, 1}, respectively. The algorithm requires only 12 minterms to generate the final results, and no complementarity operations for nonzero outputs are involved, which simplifies the system complexity significantly. An optoelectronic shared content-addressable memory based on an incoherent correlator is used for experimental demonstration. (c) 2005 Society of Photo-Optical Instrumentation Engineers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A two-step digit-set-restricted modified signed-digit (MSD) adder based on symbolic substitution is presented. In the proposed addition algorithm, carry propagation is avoided by using reference digits to restrict the intermediate MSD carry and sum digits into {(1) over bar ,0} and {0, 1}, respectively. The algorithm requires only 12 minterms to generate the final results, and no complementarity operations for nonzero outputs are involved, which simplifies the system complexity significantly. An optoelectronic shared content-addressable memory based on an incoherent correlator is used for experimental demonstration. (c) 2005 Society of Photo-Optical Instrumentation Engineers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An 8 × 8 pipelined parallel multiplier which uses the Dadda scheme is presented. The multiplier has been implemented in a 3-μm n-well CMOS process with two layers of metal using a standard cell automatic placement and routing program. The design uses a form of pipelined carry look-ahead adder in the final stage of summation, thus providing a significant contribution to the high performance of the multiplier. The design is expected to operate at a clock frequency of at least 50 MHz and has a flush time of seven clock cycles. The design illustrates a possible method of implementing an irregular architecture in VLSI using multiple levels of low-resistance, low-capacitance interconnect and automated layout techniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper proposes compact adders that are based on non-binary redundant number systems and single-electron (SE) devices. The adders use the number of single electrons to represent discrete multiple-valued logic state and manipulate single electrons to perform arithmetic operations. These adders have fast speed and are referred as fast adders. We develop a family of SE transfer circuits based on MOSFET-based SE turnstile. The fast adder circuit can be easily designed by directly mapping the graphical counter tree diagram (CTD) representation of the addition algorithm to SE devices and circuits. We propose two design approaches to implement fast adders using SE transfer circuits the threshold approach and the periodic approach. The periodic approach uses the voltage-controlled single-electron transfer characteristics to efficiently achieve periodic arithmetic functions. We use HSPICE simulator to verify fast adders operations. The speeds of the proposed adders are fast. The numbers of transistors of the adders are much smaller than conventional approaches. The power dissipations are much lower than CMOS and multiple-valued current-mode fast adders. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper proposes novel fast addition and multiplication circuits that are based on non-binary redundant number systems and single electron (SE) devices. The circuits consist of MOSFET-based single-electron (SE) turnstiles. We use the number of electrons to represent discrete multiple-valued logic states and we finish arithmetic operations by controlling the number of electrons transferred. We construct a compact PD2,3 adder and a 12x12bit multiplier using the PD2,3 adder. The speed of the adder can be as high as 600MHz with 400nW power dissipation. The speed of the adder is regardless of its operand length. The proposed circuits have much smaller transistors than conventional circuits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the development of LSI, FPGA/CPLD has been used more and more in the fields of digital signal processing and au-tocontrol and so on. And with the development of the techniques of digital processing, for fitting the system’s function, it should be a higher requirement to speed and used-resource to compute the floating point numbers. The author introduces a high speed adder-subtracter of the 23 bit’s floating point numbers, which is carried out with the parallel arithmetic and the computational speed cou...中文文摘:随着大规模集成电路的不断发展,FPGA/CPLD在数字信号处理、自动控制等方面得到了越来越多的应用。并且伴随着数字化处理技术的不断发展,为满足系统功能的要求,对浮点数运算的速度以及相应占用的资源也就提出了更高的要求。笔者即介绍了以VHDL语言为基础,采用并行算法且计算速度达到33MHz的,对23位标准浮点数实现的高速浮点加减法运算器,并以Cyclone II芯片EP2C20F484为硬件环境,最终进行时序模拟仿真,从而验证该浮点加减法器的正确性和快速特性。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Great demand in power optimized devices shows promising economic potential and draws lots of attention in industry and research area. Due to the continuously shrinking CMOS process, not only dynamic power but also static power has emerged as a big concern in power reduction. Other than power optimization, average-case power estimation is quite significant for power budget allocation but also challenging in terms of time and effort. In this thesis, we will introduce a methodology to support modular quantitative analysis in order to estimate average power of circuits, on the basis of two concepts named Random Bag Preserving and Linear Compositionality. It can shorten simulation time and sustain high accuracy, resulting in increasing the feasibility of power estimation of big systems. For power saving, firstly, we take advantages of the low power characteristic of adiabatic logic and asynchronous logic to achieve ultra-low dynamic and static power. We will propose two memory cells, which could run in adiabatic and non-adiabatic mode. About 90% dynamic power can be saved in adiabatic mode when compared to other up-to-date designs. About 90% leakage power is saved. Secondly, a novel logic, named Asynchronous Charge Sharing Logic (ACSL), will be introduced. The realization of completion detection is simplified considerably. Not just the power reduction improvement, ACSL brings another promising feature in average power estimation called data-independency where this characteristic would make power estimation effortless and be meaningful for modular quantitative average case analysis. Finally, a new asynchronous Arithmetic Logic Unit (ALU) with a ripple carry adder implemented using the logically reversible/bidirectional characteristic exhibiting ultra-low power dissipation with sub-threshold region operating point will be presented. The proposed adder is able to operate multi-functionally.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we explore various arithmetic units for possible use in high-speed, high-yield ALUs operated at scaled supply voltage with adaptive clock stretching. We demonstrate that careful logic optimization of the existing arithmetic units (to create hybrid units) indeed make them further amenable to supply voltage scaling. Such hybrid units result from mixing right amount of fast arithmetic into the slower ones. Simulations on different hybrid adder and multipliers in BPTM 70 nm technology show 18%-50% improvements in power compared to standard adders with only 2%-8% increase in die-area at iso-yield. These optimized datapath units can be used to construct voltage scalable robust ALUs that can operate at high clock frequency with minimal performance degradation due to occasional clock stretching. © 2009 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The overall aim of the work presented in this paper has been to develop Montgomery modular multiplication architectures suitable for implementation on modern reconfigurable hardware. Accordingly, novel high-radix systolic array Montgomery multiplier designs are presented, as we believe that the inherent regular structure and absence of global interconnect associated with these, make them well-suited for implementation on modern FPGAs. Unlike previous approaches, each processing element (PE) comprises both an adder and a multiplier. The inclusion of a multiplier in the PE means that the need to pre-compute or store any multiples of the operands is avoided. This also allows very high-radix implementations to be realised, further reducing the amount of clock cycles per modular multiplication, while still maintaining a competitive critical delay. For demonstrative purposes, 512-bit and 1024-bit FPGA implementations using radices of 2(8) and 2(16) are presented. The subsequent throughput rates are the fastest reported to date.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As a post-CMOS technology, the incipient Quantum-dot Cellular Automata technology has various advantages. A key aspect which makes it highly desirable is low power dissipation. One method that is used to analyse power dissipation in QCA circuits is bit erasure analysis. This method has been applied to analyse previously proposed QCA binary adders. However, a number of improved QCA adders have been proposed more recently that have only been evaluated in terms of area and speed. As the three key performance metrics for QCA circuits are speed, area and power, in this paper, a bit erasure analysis of these adders will be presented to determine their power dissipation. The adders to be analysed are the Carry Flow Adder (CFA), Brent-Kung Adder (B-K), Ladner-Fischer Adder (L-F) and a more recently developed area-delay efficient adder. This research will allow for a more comprehensive comparison between the different QCA adder proposals. To the best of the authors' knowledge, this is the first time power dissipation analysis has been carried out on these adders.