952 resultados para Transmission neuromusculaire
Resumo:
We study theoretically the low-temperature electronic transport property of a straight quantum wire under the irradiation of a finite-range transversely polarized external terahertz (THz) electromagnetic (EM) field. Using the free-electron model and the scattering matrix approach, we show an unusual behaviour of the electronic transmission of this system. A sharp step-structure appears in the electronic transmission probability as the EM field strength increases to a threshold value when a coherent EM field is applied. We demonstrate that this effect physically comes from the inelastic scattering of electrons with lateral photons through intersubband transitions.
Resumo:
The composite films of the nanocrystalline GaAs1-xSbx-SiO2 have been successfully deposited on glass and GaSb substrates by radio frequency magnetron co-sputtering. The 10K photoluminescence (PL) properties of the nanocrystalline GaAs1-xSbx indicated that the PL peaks of the GaAs1-xSbx nanocrystals follow the quantum confinement model very closely. Optical transmittance spectra showed that there is a large blue shift of optical absorption edge in nanocrystalline GaAs1-xSbx-SiO2 composite films, as compared with that of the corresponding bulk semiconductor, which is due to the quantum confinement effect.
Resumo:
A cross-sectional high-resolution transmission electron microscopy (HRTEM) study of a film deposited by a 1 keV mass-selected carbon ion beam onto silicon held at 800 degrees C is presented. Initially, a graphitic film with its basal planes perpendicular to the substrate is evolving. The precipitation of nanodiamond crystallites in upper layers is confirmed by HRTEM, selected area electron diffraction, and electron energy loss spectroscopy. The nucleation of diamond on graphitic edges as predicted by Lambrecht [W. R. L. Lambrecht, C. H. Lee, B. Segall, J. C. Angus, Z. Li, and M. Sunkara, Nature, 364 607 (1993)] is experimentally confirmed. The results are discussed in terms of our recent subplantation-based diamond nucleation model. (c) 2005 American Institute of Physics.
Resumo:
A new method to measure reciprocal four-port structures, using a 16-term error model, is presented. The measurement is based on 5 two-port calibration standards connected to two of the ports, while the network analyzer is connected to the two remaining ports. Least-squares-fit data reduction techniques are used to lower error sensitivity. The effect of connectors is deembedded using closed-form equations. (C) 2007 Wiley Periodicals, Inc.
Resumo:
A new double-layer grating template is designed to reduce the out-of-band loss as much as 1.8dB when the loss of LP03 reaches 10.2 dB. Meanwhile, we propose a method to remove the sidelobes in the transmission spectra by the adjustment of the thickness of pressure plates. The plate-thickness-induced shift of resonant wavelength and the attenuation of loss peak intensity when removing sidelobes can be modified by the fibre distance and contact point on the pressure plates.
Resumo:
Details of the design, fabrication and testing of a strained InGaAsP/InGaAsP multiple quantum well (MQW) electroabsorption modulator (EAM) monolithically integrated with a DFB laser by ultra-low-pressure selective area growth (SAG) are presented. The method greatly simplifies the integration process. A study of the controllability of band-gap energy by SAG has been performed. After being completely packaged in a seven-pin butterfly compact module, the device successfully performs 10 Gb s(-1) nonreturn to zero (NRZ) operation on uncompensated transmission span >53 km in a standard fibre with a 8.7 dB dynamic extinction ratio. A receiver sensitivity of -18.9 dBm at a bit error rate (BER) of 10(-10) is confirmed. 10 GHz short pulse trains with 15.3 ps pulsewidth have also been generated.
Resumo:
A strained InGaAsP-InP multiple-quantum-well DFB laser monolithically integrated with electroabsorption modulator by ultra-low-pressure (22 mbar) selective-area-growth is presented. The integrated chip exhibits superior characteristics, such as low threshold current of 19 mA, single-mode operation around 1550 nm range with side-mode suppression ratio over 40 dB, and larger than 16 dB extinction ratio when coupled into a single-mode fiber. More than 10 GHz modulation bandwidth is also achieved. After packaged in a compact module, the device successfully performs 10-Gb/s NRZ transmission experiments through 53.3 km of standard fiber with 8.7 dB dynamic extinction ratio. A receiver sensitivity of -18.9 dBm at bit-error-rate of 10(-1)0 is confirmed. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In this work, a novel light source of strained InGaAsP/InGaAsP MQW EAM monolithically integrated with DFB laser is fabricated by ultra-low-pressure (22 x 10(2) Pa) selective area growth ( SAG) MOCVD technique. Superior device performances have been obtained, sue h as low threshold current of 19 mA, output light power of about 7 mW, and over 16 dB extinction ratio at 5 V applied voltage when coupled into a single mode fiber. Over 10 GHz 3 dB bandwidth in EAM part is developed with a driving voltage of 3 V. After the chip is packaged into a 7-pin butterfly compact module, 10-Gb/s NRZ transmission experiments are successfully performed in standard fiber. A clearly-open eye diagram is achieved in the module output with over 8.3 dB dynamic extinction ratio. Power penalty less than 1.5 dB has been obtained after transmission through 53.3 km of standard fiber, which demonstrates that high-speed, low chirp EAM/DFB integrated light source can be obtained by ultra-low-pressure (22 x 102 Pa) SAG method.
Resumo:
The polyetherketone (PEK-c) guest-host polymer planar waveguides doped with (4'-nitro)-3-azo-9-ethyl-carbazole (NAEC) were prepared. The waveguide films were poled by corona-onset poling at elevated temperature (COPET), and the corona poling setup includes a grid voltage making the surface-charge distribution uniform. By using the prism-in coupling method, the dark-line spectrum given by the reflected intensity versus the angle of incidence have been obtained, and the optical transmission losses of mth modes have been measured for the poled polymer waveguides at lambda = 632.8 nm. The measurement result showed that the optical loss of the fundamental mode is less than 0.7 dB cm(-1) for the TE polarization. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
A transmission electron microscopy study of triple-ribbon contrast features in a ZnTe layer grown epitaxially on a vicinal GaAs (001) substrate is reported. The ribbons go through the layer as threading dislocations near the [<(11)over bar 2>](111) or [112](<(11)over bar 1>) directions. Each of these (with a 40 nm width) has two narrow parts enclosed by three partial dislocations (with a 20 nm spacing). By contrast analysis and contrast simulation, the ribbons have been shown to be composed of two partially overlapping stacking faults. Their origin is attributed to a forced reaction between two crossing perfect misfit dislocations.
Resumo:
A numerical analysis of an electron waveguide coupler based on two quantum wires coupled by a magnetically defined barrier is presented with the use of the scattering-matrix method. For different geometry parameters and magnetic fields, tunneling transmission spectrum is obtained as a function of the electron energy. Different from that of conventional electron waveguide couplers, the transmission spectrum of the magnetically coupled quantum wires does not have the symmetry with regard to those geometrically symmetrical ports, It was found that the magnetic field in the coupling region drastically enhances the coupling between the two quantum wires for one specific input port while it weakens the coupling for the other input port. The results can be well understood by the formation of the edge states in the magnetically defined barrier region. Thus, whether these edge states couple or decouple to the electronic propagation modes in the two quantum wires, strongly depend on the relative moving directions of electrons in the propagating mode in the input port and the edge states in the magnetic region. This leads to a big difference in transmission coefficients between two quantum wires when injecting electrons via different input ports. Two important coupler specifications, the directivity and uniformity, are calculated which show that the system we considered behaves as a good quantum directional coupler. (C) 1997 American Institute of Physics.
Resumo:
This paper describes the design process and performance of the optimized parallel optical transmission module. Based on 1x12 VCSEL (Vertical Cavity Surface Emitting Laser) array, we designed and fabricated the high speed parallel optical modules. Our parallel optical module contains a 1x12 VCSEL array, a 12 channel CMOS laser driver circuit, a high speed PCB (Printed Circuit Board), a MT fiber connector and a packaging housing. The L-I-V characteristics of the 850nm VCSEL was measured at the operating current 8mA, 3dB frequency bandwidth more than 3GHz and the optical output 1mW. The transmission rate of all 12 channels is 30Gbit/s, with a single channel 2.5Gbit/s. By adopting the integration of the 1x12 VCSEL array and the driver array, we make a high speed PCB (Printed Circuit Board) to provide the optoelectronic chip with the operating voltage and high speed signals current. The LVDS (Low-Voltage Differential Signals) was set as the input signal to achieve better high frequency performance. The active coupling was adopted with a MT connector (8 degrees slant fiber array). We used the Small Form Factor Pluggable (SFP) packaging. With the edge connector, the module could be inserted into the system dispense with bonding process.
Resumo:
An analytic method is used to study the reflection and transmission coefficients of the double submerged rectangular blocks (DSRBs) in oblique waves.. The scattering potentials are obtained by means of the eigenfunction expansion method, and expressions for the reflection and transmission coefficients are determined. The boundary element method is employed to verify the correctness of the present analytical method. The DSRBs have better performance than the single submerged rectangular block (SSRB) in certain cases. The reflection and transmission properties of the DSRBs are investigated for some specific cases, and the influences of the geometric parameters are also presented.
Resumo:
A novel design approach to ultra-narrow transmission-band fiber Bragg grating (FBG) is proposed and demonstrated for the first time. The new grating consists of multiple identical distributed-Bragg reflector (DBR) cavities and a it-phase-shifted gap, and hence, the proposed laser is constructed by the cascade of these identical DBR fiber lasers. By manufacturing the proposed grating in a piece of Er-Yb codoped fiber, a single-wavelength single-longitudinal-mode (SLM) fiber laser with improved efficiency is demonstrated experimentally. The experimental results show that the pump-to-signal conversion efficiency of the proposed laser is improved by a factor of two in comparison with the optimized distributed-feedback (DFB) fiber lasers. (c) 2007 Elsevier B.V. All rights reserved.