965 resultados para CdTe quantum dots


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ge self-assembled quantum dots (SAQDs) are grown with a self-assembled UHV/CVD epitaxy system. Then,the as-grown Ge quantum dots are annealed by ArF excimer laser. In the ultra-shot laser pulse duration,~20ns, bulk diffusion is forbidden, and only surface diffusion occurs, resulting in a laser induced quantum dot (LIQD). The diameter of the LIQD is 20~25nm which is much smaller than the as-grown dot and the LIQD has a higher density of about 6 × 10~(10)cm~(-2). The surface morphology evolution is investigated by AFM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Space ordered 1.3μm self-assembled InAs QDs are grown on GaAs(100) vicinal substrates by MOCVD. Photoluminescence measurements show that the dots on vicinal substrates have a much higher PL intensity and a narrower FWHM than those of dots on exact substrates, which indicates better material quality. To obtain 1.3μm emissions of InAs QDs, the role of the so called InGaAs strain cap layer (SCL) and the strain buffer layer (SBL) in the strain relaxation process in quantum dots is studied. While the use of SBL results only in a small change of emission wavelength,SCL can extend the QD's emission over 1.3μm due to the effective strain reducing effect of SCL.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The time-resolved photoluminescence and steady photoluminescence (TRPL and PL) spectra on self-assembled InAs/GaAs quantum dots (QDs) are investigated. By depositing GaAs/InAs short period superlattices (SLs), 1. 48 μtm emission is obtained at room temperature. Temperature dependent PL measurements show that the PL intensity of the emission is very steady. It decays only to half as the temperature increases from 15 K to room temperature, while at the same time, the intensity of the other emission decreases by a factor of 5 orders of magnitude. These two emissions are attributed to large-size QDs and short period superlattices (SLs), respectively. Large-size QDs are easier to capture and confine carriers,which benefits the lifetime of PL, and therefore makes the emission intensity insensitive to the temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we calculated the elastic strain and elastic strain energy inside the semiconductor quantum dots by using the finite element programming package ANSYS 6.0. The values of elastic strain and strain energy in the three shapes of quantum dots were calculated, and led to the conclusion that the pyramid island structure of quantum dots is the most stable shape in the three shapes under thermal-equilibrium condition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-organized In_(0.5)Ga_(0.5)As/GaAs quantum island structure emitting at 1. 35 (im at room temperature has been successfully fabricated by molecular beam epitaxy (MBE) via cycled (InAs)_1/( GaAs)_1 monolayer deposition method. Photoluminescence (PL) measurement shows that very narrow PL linewidth of 19.2 meV at 300 K has been reached for the first time, indicating effective suppression of inhomogeneous broadening of optical emission from the In_(0.5)Ga_(0.5)As islands structure. Our results provide important information for optimizing the epitaxial structures of 1.3 μm wavelength quantum dot (QD) devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-assembled In_0.35Ga_0.65As/GaAs quantum dots with low indium content are grown under different growth temperature and investigated using contact atomic force microscopy(AFM). In order to obtain high density and high uniformityu of quantum dots, optimized conditions are concluded for MBE growth. Optimized growth condi-tions also compared with these of InAs/GaAs quantum dots. This will be very useful for InGaAs/GaAs QDs opto-electronic applications, such as quantum dots lasers and quantum dots infrared photodetectors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

于2010-11-23批量导入

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantum dot infrared photodetectors (QDIP) are in the center of research interest nowadays. However the real QDIP is inferior to those predicted in theory, in which the dot density is much higher than those reported. Through optimizing the growth conditions, we realized the control of high-density quantum dot growth. This will be very useful for future QDIP development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface morphology and optical properties of 1.3 mum self-organized InGaAs/GaAs quantum dots structure grown by molecular beam epitaxy have been investigated by atomic force microscopy and photoluminescence measurements. It has been shown that the surface morphology evolution and emission wavelengths of InGaAs/GaAs QDs can be controlled effectively via cycled monolayer deposition methods due to the reduction of the surface strain. Our results provide important information for optimizing the epitaxial parameters for obtaining 1.3 mum long wavelength emission quantum dots structures. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glass spherical microcavities containing CdSSe semiconductor quantum dots (QDs) of a few microns in diameter are fabricated using a physical method. When a single glass microspherical cavity is excited by a laser beam at room temperature, very strong and sharp whispering gallery modes are shown on the background of PL spectra of CdSSe QDs, which confirms that coupling between the optical emission of embedded QDs and spherical cavity modes is realized. For a glass microsphere only 4.6 mum in diameter, it was found that the energy separation is nearly up to 26 nm both for TE and TM modes. With the increasing excitation intensity, the excitation intensity dependence of the emission intensity is not linear in the double-logarithmic scale. Above the threshold value, the linewidths of resonance modes become narrower. The lasing behavior is achieved at relatively low excitation intensity at room temperature. High optical stability and low threshold value make this optical system promising in visible microlaser applications. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ground and excited state excitonic transitions of stacked InAs self-organized quantum dots (QDs) in a laser diode structure are studied. The interband absorption transitions of QDs are investigated by non-destructive PV spectra, indicating that the strongest absorption is related to the excited states with a high density and coincides with the photon energy of lasing emission. The temperature and excitation (electric injection) intensity dependences of photoluminescence and electroluminescence indicate the influence of state filling effect on the luminescence of threefold stacked QDs. The results indicate that different coupling channels exist between electronic states in both vertical and lateral directions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Growth interruption was introduced after the deposition of GaAs cap layer, which is thinner than the mean height of Quantum dots. Uniformity of quantum dots has been enhanced because the full width of half maximum of photoluminescence decrease from 80meV to 27meV in these samples as the interruption time increasing from 0 to 120 second. Meanwhile, we have observed that the peak position of photoluminescence is a function of interruption time. This effect can be used to control the energy level of quantum dots. The phenomena mentioned above can be attributed to the diffusion of In atoms from the top of InAs islands to the top of GaAs cap layer caused by the difference of surface energies between InAs and GaAs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The size and shape Evolution of self-assembled InAs quantum dots (QDs) influenced by 2.0-ML InAs seed layer has been systematically investigated for 2.0, 2.5, and 2.9-ML deposition on GaAs(1 0 0) substrate. Based on comparisons with the evolution of InAs islands on single layer samples at late growth stage, the bimodal size distribution of InAs islands at 2.5-ML InAs coverage and the formation of larger InAs quantum dots at 2.9-ML deposition have been observed on the second InAs layer. The further cross-sectional transmission electron microscopy measurement indicates the larger InAs QDs: at 2.9-ML deposition on the second layer are free of dislocation. In addition, the interpretations for the size and shape evolution of InAs/GaAs QDs on the second layer will be presented. (C) 2001 Elsevier Science B.V. All lights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Red shifts of emission wavelength of self-organized In(Cla)As/GaAs quantum dots (QDs) covered by 3 nm thick InxGa1-xAs layer with three different In mole fractions (x = 0.1, 0.2 and 0.3, respectively) have been observed. Transmission electron microscopy images demonstrate that the stress along growth direction in the InAs dots was reduced due to introducing the InxGa1-xAs (x = 0.1, 0.2 and 0.3) covering layer instead of GaAs layer. Atomic force microscopy pictures show a smoother surface of InAs islands covered by an In0.2Ga0.8As layer. It is explained by the calculations that the redshifts of the photoluminescence (PL) spectra from the QDs covered by the InxGa1-xAs (x greater than or equal to 0.1) layers were mainly due to the reducing of the strain other than the InAs/GaAs intermixing in the InAs QDs. The temperature dependent PL spectra further confirm that the InGaAs covering layer can effectively suppress the temperature sensitivity of PL emissions. 1.3 mum emission wavelength with a very narrow linewidth of 19.2 mcV at room temperature has been obtained successfully from In,In0.5Ga0.5As/GaAs self-assembled QDs covered by a 3-nm In0.2Ga0.2As strain reducing layer. (C) 2001 Elsevier Science B.V. All rights reserved.