918 resultados para Absorption (Physiology)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have made a normal incidence high infrared absorption efficiency AlAs/Al0.55Ga0.45As multiple-quantum-well structure grown on (211) GaAs substrates by molecular beam epitaxy (MBE). A strong infrared absorption signal at 11.6 mu m due to the transition of the ground state to the first excited state, and a small signal at 6.8 mu m due to the transition from the ground state to continuum. were observed. A 45 degrees tilted incidence measurement was also performed on the same sample for the comparison with a normal incidence measurement. Both measurements provide important information about the quantum well absorption efficiency. Efficiencies which evaluate the absorption of electric components perpendicular and parallel to the well plane are eta(perpendicular to) = 25% and eta(parallel to) = 88%, respectively. The total efficiency is then deduced to be eta = 91%. It is apparent that the efficiency eta(parallel to) dominates the total quantum efficiency eta Because an electron in the (211) AlAs well has a small effective mass (m(zx)* or m(zy)*), the normal incidence absorption coefficient is expected to be higher:than that grown on (511) and (311) substrates. Thus, in the present study, we use the (211) substrate to fabricate QWIP. The experimental results indicate the potential of these novel structures for use as normal incidence infrared photodetectors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocrystalline silicon embedded SiO2 matrix is formed by annealing the SiO2 films fabricated by plasma enhanced chemical vapor deposition technique. In conjunction with the micro-Ramam spectra, the absorption spectra of the films have been investigated. The blue-shift of absorption edge with decreasing size of silicon crystallites is due to quantum confinement effect. It is found that nanocrystalline silicon is of an indirect band structure, and that the absorption presents an exponential dependance absorption coefficient on photon energy ii! the range of 2.0-3.0 eV, and a sub-band appears in the the range of 1.0-1.5 eV. We believe that the exponential absorption is due to the indirect band-to-band transition of electrons in silicon nanocrystallites, while the Sub-band absorption is ascribed to transitions between the amorphous silicon states existing in the films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-organized InGaAs/GaAs quantum dots (QDs) stacked multilayers have been prepared by solid source molecular beam epitaxy. Cross-sectional transmission electron microscopy shows that the InGaAs QDs are nearly perfectly vertically aligned in the growth direction [100]. The filtering effect on the QDs distribution is found to be the dominant mechanism leading to vertical alignment and a highly uniform size distribution. Moreover, we observe a distinct infrared absorption from the sample in the range of 8.6-10.7 mu m. This indicates the potential of QDs multilayer structure for use as infrared photodetector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Normal-incident infrared absorption in the 8-12-mu m-atmospheric spectral window in the InGaAs/GaAs quantum-dot superlattice is observed. Using cross-sectional transmission electron microscopy, we find that the InGaAs quantum dots are perfectly vertically aligned in the growth direction (100). Under the normal incident radiation, a distinct absorption peaked at 9.9 mu m is observed. This work indicates the potential of this quantum-dot superlattice structure for use as normal-incident infrared imaging focal arrays application without fabricating grating structures. (C) 1998 American Institute of Physics. [S0003-6951(98)01151-6].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

30-period InGaAs/GaAs quantum dot superlattice was fabricated by MBE. Using cross sectional transmission electron microscopy, the InGaAs quantum dots were found to be perfectly vertically aligned in the growth direction (100). Under normally incident radiation, a distinct absorption in the 8.5 similar to 10.4 mu m range peaked at 9.9 mu m was observed. The normally incident infrared absorption in vertically aligned quantum dot superlattice in the 8 similar to 12 mu m range was realized for the first time. This result indicates the potential application of the quantum dot superlattice structure without grating as normally incident infrared detector focal plane arrays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have observed an extremely narrow absorption spectrum due to bound-to-continuum transition in GaAs/AlxGa1-xAs multiple quantum wells (MQWs). Its linewidth is only about one tenth of the values reported previously. Our calculation indicates that the broadening of the excited state in the continuum has little contribution to the absorption linewidth. We have grown a sample whose MQW region contains two kinds of wells with a minor thickness inhomogeneity. Its resultant absorption linewidth is six times as large as that of homogeneous well sample, which is in good agreement with our theoretical analysis. Thus we can suggest that the wider absorption spectra reported by many authors may be due to the well width inhomogeneity. (C) 1998 American Institute of Physics. [S0003-6951(98)03430-5]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microstructure, hydrogen bonding configurations and hydrogen content of high quality and stable hydrogenated amorphous silicon (a-Si:H) films prepared by a simple ''uninterrupted growth/annealing" plasma enhanced chemical vapor deposition technique have been investigated by Raman scattering and infrared absorption spectroscopy. The high stability a-Si:H films contain small amounts of a microcrystalline phase and not less hydrogen (10-16 at. %), particularly, the clustered phase hydrogen, Besides, the hydrogen distribution is very inhomogeneous. Some of these results are substantially distinct from those of conventional device-quality n-Si:H film or stable cr-Si:H films prepared by the other techniques examined to date. The stability of n-Si:H films appears to have no direct correlation with the hydrogen content or the clustered phase hydrogen concentration. The ideal n-Si:H network with high stability and low defect density is perhaps not homogeneous. (C) 1998 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Samples have been prepared at different temperatures by loading It molecules into the cages of zeolite 5A, and the measurements of the absorption spectra have been carried out for the prepared samples. It is shown that 12 molecular clusters are formed in the cages of zeolite 5A, and it is also found that molecular clusters which are bonded with intermolecular forces have an important feature, namely, the intermolecular distance in molecular clusters can be changed on different preparing conditions and the blue shift of absorption edges can not be as the criterion of forming molecular clusters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have shown that high energy ion implantation enhanced intermixing (HE-IIEI) technology for quantum well (QW) structures is a powerful technique which can be used to blue shift the band gap energy of a QW structure and therefore decrease its band gap absorption. Room temperature (RT) photoluminescence (PL) and guided-wave transmission measurements have been employed to investigate the amount of blue shift of the band gap energy of an intermixed QW structure and the reduction of band gap absorption, Record large blue shifts in PL peaks of 132 nm for a 4-QW InGaAs/InGaAsP/InP structure have been demonstrated in the intermixed regions of the QW wafers, on whose non-intermixed regions, a shift as small as 5 nm is observed. This feature makes this technology very attractive for selective intermixing in selected areas of an MQW structure. The dramatical reduction in band gap absorption for the InP based MQW structure has been investigated experimentally. It is found that the intensity attenuation for the blue shifted structure is decreased by 242.8 dB/cm for the TE mode and 119 dB/cm for the TM mode with respect to the control samples. Electro-absorption characteristics have also been clearly observed in the intermixed structure. Current-Voltage characteristics were employed to investigate the degradation of the p-n junction in the intermixed region. We have achieved a successful fabrication and operation of Y-junction optical switches (JOS) based on MQW semiconductor optical amplifiers using HE-IIEI technology to fabricate the low loss passive waveguide. (C) 1997 Published by Elsevier Science B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The linear and circular photogalvanic effects have been observed in undoped InN films for the interband transition by irradiation of 1060 nm laser at room temperature. The spin polarized photocurrent depends on the degree of polarization, and changes its sip when the radiation helicity changes from left-handed to right-handed. This result indicates the sizeable spin-orbit interaction in the InN epitaxial layer and provides an effective method to generate spin polarized photocurrent and to detect spin-splitting effect in semiconductors with promising applications on spintronics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wavelength tunable electro-absorption modulated distributed Bragg reflector lasers (TEMLs) are promising light source in dense wavelength division multiplexing (DWDM) optical fiber communication system due to high modulation speed, small chirp, low drive voltage, compactness and fast wavelength tuning ability. Thus, increased the transmission capacity, the functionality and the flexibility are provided. Materials with bandgap difference as large as 250nm have been integrated on the same wafer by a combined technique of selective area growth (SAG) and quantum well intermixing (QWI), which supplies a flexible and controllable platform for the need of photonic integrated circuits (PIC). A TEML has been fabricated by this technique for the first time. The component has superior characteristics as following: threshold current of 37mA, output power of 3.5mW at 100mA injection and 0V modulator bias voltage, extinction ratio of more than 20 dB with modulator reverse voltage from 0V to 2V when coupled into a single mode fiber, and wavelength tuning range of 4.4nm covering 6 100-GHz WDM channels. A clearly open eye diagram is observed when the integrated EAM is driven with a 10-Gb/s electrical NRZ signal. A good transmission characteristic is exhibited with power penalties less than 2.2 dB at a bit error ratio (BER) of 10(-10) after 44.4 km standard fiber transmission.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High performance InGaAsP/InGaAsP strained compensated multiple-quantum-well (MQW) electroabsorption modulators (EAM) monolithically integrated with a DFB laser diode have been designed and realized by ultra low metal-organic vapor phase epitaxy (MOVPE) based on a novel butt joint scheme. The optimization thickness of upper SCH layer for DFB and EAM was obtained of the proposed MQW structure of the EAM through numerical simulation and experiment. The device containing 250(mu m) DFB and 170(mu m) EAM shows good material quality and exhibits a threshold current of 17mA, an extinction ratio of higher than 30 dB and a very high modulation efficiency (12dB/V) from 0V to 1V. By adopting a high-mesa ridge waveguide and buried polyimide, the capacitance of the modulator is reduced to about 0.30 pF corresponding to a 3dB bandwidth more than 20GHz.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Applying the model dielectric function method, we have expressed the absorption coefficient of GaSb analytically at room temperature relating to the contribution of various critical points of its electronic band structure. The calculated absorption spectrum shows good agreement with the reported experimental data obtained by spectral ellipsometry on nominally undoped sample. Based on this analytical absorption spectrum, we have qualitatively evaluated the response of active absorbing layer structure and its photoelectric conversion properties of GaSb thermophotovoltaic device on the perturbation of external thermal radiation induced by the varying radiator temperature or emissivity. Our calculation has demonstrated that desirable thickness to achieve the maximum conversion efficiency should be decreased with the increment of radiator temperature and the performance degradation brought by any structure deviation from its optimal one would be stronger meanwhile. For the popular radiator temperature, no more than 1500 K in a real solar thermophotovoltaic system, and typical doping profile in GaSb cell, a reasonable absorbing layer structure parameter should be controlled within 100-300 nm for the emitter while 3000-5000 nm for the base.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radiant heat conversion performance dominated by the active layer of Ga0.84In0.16As0.14Sb0.86 diode has been systematically investigated based on an analytic absorption spectrum, which is suggested here by numerically fitting the limited experimental data. For the concerned diode configuration, our calculation demonstrates that the optimal base doping is 3-4 x 10(17) cm(-3), which is less sensitive to the variation of the external radiation spectrum. Given the scarcity of the alloy elements, an economical device configuration of the 0.2-0.6 mu m emitter and the 4-6 mu m base would be particularly acceptable because the corresponding conversion efficiency cannot exhibit discouraging degradation in comparison to the one for the optimal structure, the thickness of which may be up to 10 mu m. More importantly, the method we suggested here to calculate alloy absorption can be easily transferred to other composition, thus bringing great convenience for design or optimization of the optoelectronic device formed by these alloys.