968 resultados para Quasilinear partial differential equations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we introduce a type of Hypercomplex Fourier Series based on Quaternions, and discuss on a Hypercomplex version of the Square of the Error Theorem. Since their discovery by Hamilton (Sinegre [1]), quaternions have provided beautifully insights either on the structure of different areas of Mathematics or in the connections of Mathematics with other fields. For instance: I) Pauli spin matrices used in Physics can be easily explained through quaternions analysis (Lan [2]); II) Fundamental theorem of Algebra (Eilenberg [3]), which asserts that the polynomial analysis in quaternions maps into itself the four dimensional sphere of all real quaternions, with the point infinity added, and the degree of this map is n. Motivated on earlier works by two of us on Power Series (Pendeza et al. [4]), and in a recent paper on Liouville’s Theorem (Borges and Mar˜o [5]), we obtain an Hypercomplex version of the Fourier Series, which hopefully can be used for the treatment of hypergeometric partial differential equations such as the dumped harmonic oscillation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Let (X, parallel to . parallel to) be a Banach space and omega is an element of R. A bounded function u is an element of C([0, infinity); X) is called S-asymptotically omega-periodic if lim(t ->infinity)[u(t + omega) - u(t)] = 0. In this paper, we establish conditions under which an S-asymptotically omega-periodic function is asymptotically omega-periodic and we discuss the existence of S-asymptotically omega-periodic and asymptotically omega-periodic solutions for an abstract integral equation. Some applications to partial differential equations and partial integro-differential equations are considered. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We prove a uniqueness result related to the Germain–Lagrange dynamic plate differential equation. We consider the equation {∂2u∂t2+△2u=g⊗f,in ]0,+∞)×R2,u(0)=0,∂u∂t(0)=0, where uu stands for the transverse displacement, ff is a distribution compactly supported in space, and g∈Lloc1([0,+∞)) is a function of time such that g(0)≠0g(0)≠0 and there is a T0>0T0>0 such that g∈C1[0,T0[g∈C1[0,T0[. We prove that the knowledge of uu over an arbitrary open set of the plate for any interval of time ]0,T[]0,T[, 0

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN] This paper presents an interpretation of a classic optical flow method by Nagel and Enkelmann as a tensor-driven anisotropic diffusion approach in digital image analysis. We introduce an improvement into the model formulation, and we establish well-posedness results for the resulting system of parabolic partial differential equations. Our method avoids linearizations in the optical flow constraint, and it can recover displacement fields which are far beyond the typical one-pixel limits that are characteristic for many differential methods for optical flow recovery. A robust numerical scheme is presented in detail. We avoid convergence to irrelevant local minima by embedding our method into a linear scale-space framework and using a focusing strategy from coarse to fine scales. The high accuracy of the proposed method is demonstrated by means of a synthetic and a real-world image sequence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis deals with inflation theory, focussing on the model of Jarrow & Yildirim, which is nowadays used when pricing inflation derivatives. After recalling main results about short and forward interest rate models, the dynamics of the main components of the market are derived. Then the most important inflation-indexed derivatives are explained (zero coupon swap, year-on-year, cap and floor), and their pricing proceeding is shown step by step. Calibration is explained and performed with a common method and an heuristic and non standard one. The model is enriched with credit risk, too, which allows to take into account the possibility of bankrupt of the counterparty of a contract. In this context, the general method of pricing is derived, with the introduction of defaultable zero-coupon bonds, and the Monte Carlo method is treated in detailed and used to price a concrete example of contract. Appendixes: A: martingale measures, Girsanov's theorem and the change of numeraire. B: some aspects of the theory of Stochastic Differential Equations; in particular, the solution for linear EDSs, and the Feynman-Kac Theorem, which shows the connection between EDSs and Partial Differential Equations. C: some useful results about normal distribution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heat treatment of steels is a process of fundamental importance in tailoring the properties of a material to the desired application; developing a model able to describe such process would allow to predict the microstructure obtained from the treatment and the consequent mechanical properties of the material. A steel, during a heat treatment, can undergo two different kinds of phase transitions [p.t.]: diffusive (second order p.t.) and displacive (first order p.t.); in this thesis, an attempt to describe both in a thermodynamically consistent framework is made; a phase field, diffuse interface model accounting for the coupling between thermal, chemical and mechanical effects is developed, and a way to overcome the difficulties arising from the treatment of the non-local effects (gradient terms) is proposed. The governing equations are the balance of linear momentum equation, the Cahn-Hilliard equation and the balance of internal energy equation. The model is completed with a suitable description of the free energy, from which constitutive relations are drawn. The equations are then cast in a variational form and different numerical techniques are used to deal with the principal features of the model: time-dependency, non-linearity and presence of high order spatial derivatives. Simulations are performed using DOLFIN, a C++ library for the automated solution of partial differential equations by means of the finite element method; results are shown for different test-cases. The analysis is reduced to a two dimensional setting, which is simpler than a three dimensional one, but still meaningful.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we develop and analyze an adaptive numerical scheme for simulating a class of macroscopic semiconductor models. At first the numerical modelling of semiconductors is reviewed in order to classify the Energy-Transport models for semiconductors that are later simulated in 2D. In this class of models the flow of charged particles, that are negatively charged electrons and so-called holes, which are quasi-particles of positive charge, as well as their energy distributions are described by a coupled system of nonlinear partial differential equations. A considerable difficulty in simulating these convection-dominated equations is posed by the nonlinear coupling as well as due to the fact that the local phenomena such as "hot electron effects" are only partially assessable through the given data. The primary variables that are used in the simulations are the particle density and the particle energy density. The user of these simulations is mostly interested in the current flow through parts of the domain boundary - the contacts. The numerical method considered here utilizes mixed finite-elements as trial functions for the discrete solution. The continuous discretization of the normal fluxes is the most important property of this discretization from the users perspective. It will be proven that under certain assumptions on the triangulation the particle density remains positive in the iterative solution algorithm. Connected to this result an a priori error estimate for the discrete solution of linear convection-diffusion equations is derived. The local charge transport phenomena will be resolved by an adaptive algorithm, which is based on a posteriori error estimators. At that stage a comparison of different estimations is performed. Additionally a method to effectively estimate the error in local quantities derived from the solution, so-called "functional outputs", is developed by transferring the dual weighted residual method to mixed finite elements. For a model problem we present how this method can deliver promising results even when standard error estimator fail completely to reduce the error in an iterative mesh refinement process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Factorization Method localizes inclusions inside a body from measurements on its surface. Without a priori knowing the physical parameters inside the inclusions, the points belonging to them can be characterized using the range of an auxiliary operator. The method relies on a range characterization that relates the range of the auxiliary operator to the measurements and is only known for very particular applications. In this work we develop a general framework for the method by considering symmetric and coercive operators between abstract Hilbert spaces. We show that the important range characterization holds if the difference between the inclusions and the background medium satisfies a coerciveness condition which can immediately be translated into a condition on the coefficients of a given real elliptic problem. We demonstrate how several known applications of the Factorization Method are covered by our general results and deduce the range characterization for a new example in linear elasticity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In various imaging problems the task is to use the Cauchy data of the solutions to an elliptic boundary value problem to reconstruct the coefficients of the corresponding partial differential equation. Often the examined object has known background properties but is contaminated by inhomogeneities that cause perturbations of the coefficient functions. The factorization method of Kirsch provides a tool for locating such inclusions. In this paper, the factorization technique is studied in the framework of coercive elliptic partial differential equations of the divergence type: Earlier it has been demonstrated that the factorization algorithm can reconstruct the support of a strictly positive (or negative) definite perturbation of the leading order coefficient, or if that remains unperturbed, the support of a strictly positive (or negative) perturbation of the zeroth order coefficient. In this work we show that these two types of inhomogeneities can, in fact, be located simultaneously. Unlike in the earlier articles on the factorization method, our inclusions may have disconnected complements and we also weaken some other a priori assumptions of the method. Our theoretical findings are complemented by two-dimensional numerical experiments that are presented in the framework of the diffusion approximation of optical tomography.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most of the problems in modern structural design can be described with a set of equation; solutions of these mathematical models can lead the engineer and designer to get info during the design stage. The same holds true for physical-chemistry; this branch of chemistry uses mathematics and physics in order to explain real chemical phenomena. In this work two extremely different chemical processes will be studied; the dynamic of an artificial molecular motor and the generation and propagation of the nervous signals between excitable cells and tissues like neurons and axons. These two processes, in spite of their chemical and physical differences, can be both described successfully by partial differential equations, that are, respectively the Fokker-Planck equation and the Hodgkin and Huxley model. With the aid of an advanced engineering software these two processes have been modeled and simulated in order to extract a lot of physical informations about them and to predict a lot of properties that can be, in future, extremely useful during the design stage of both molecular motors and devices which rely their actions on the nervous communications between active fibres.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Squeeze film damping effects naturally occur if structures are subjected to loading situations such that a very thin film of fluid is trapped within structural joints, interfaces, etc. An accurate estimate of squeeze film effects is important to predict the performance of dynamic structures. Starting from linear Reynolds equation which governs the fluid behavior coupled with structure domain which is modeled by Kirchhoff plate equation, the effects of nondimensional parameters on the damped natural frequencies are presented using boundary characteristic orthogonal functions. For this purpose, the nondimensional coupled partial differential equations are obtained using Rayleigh-Ritz method and the weak formulation, are solved using polynomial and sinusoidal boundary characteristic orthogonal functions for structure and fluid domain respectively. In order to implement present approach to the complex geometries, a two dimensional isoparametric coupled finite element is developed based on Reissner-Mindlin plate theory and linearized Reynolds equation. The coupling between fluid and structure is handled by considering the pressure forces and structural surface velocities on the boundaries. The effects of the driving parameters on the frequency response functions are investigated. As the next logical step, an analytical method for solution of squeeze film damping based upon Green’s function to the nonlinear Reynolds equation considering elastic plate is studied. This allows calculating modal damping and stiffness force rapidly for various boundary conditions. The nonlinear Reynolds equation is divided into multiple linear non-homogeneous Helmholtz equations, which then can be solvable using the presented approach. Approximate mode shapes of a rectangular elastic plate are used, enabling calculation of damping ratio and frequency shift as well as complex resistant pressure. Moreover, the theoretical results are correlated and compared with experimental results both in the literature and in-house experimental procedures including comparison against viscoelastic dampers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we prove a Lions-type compactness embedding result for symmetric unbounded domains of the Heisenberg group. The natural group action on the Heisenberg group TeX is provided by the unitary group U(n) × {1} and its appropriate subgroups, which will be used to construct subspaces with specific symmetry and compactness properties in the Folland-Stein’s horizontal Sobolev space TeX. As an application, we study the multiplicity of solutions for a singular subelliptic problem by exploiting a technique of solving the Rubik-cube applied to subgroups of U(n) × {1}. In our approach we employ concentration compactness, group-theoretical arguments, and variational methods.