A uniqueness theorem for the determination of sources in the Germain–Lagrange plate equation
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
14/02/2014
14/02/2014
2013
|
Resumo |
We prove a uniqueness result related to the Germain–Lagrange dynamic plate differential equation. We consider the equation {∂2u∂t2+△2u=g⊗f,in ]0,+∞)×R2,u(0)=0,∂u∂t(0)=0, where uu stands for the transverse displacement, ff is a distribution compactly supported in space, and g∈Lloc1([0,+∞)) is a function of time such that g(0)≠0g(0)≠0 and there is a T0>0T0>0 such that g∈C1[0,T0[g∈C1[0,T0[. We prove that the knowledge of uu over an arbitrary open set of the plate for any interval of time ]0,T[]0,T[, 0<T<T00<T<T0, is enough to determine uniquely f∈E′(R2)f∈E′(R2). |
Identificador |
http://www.producao.usp.br/handle/BDPI/44000 10.1016/j.jmaa.2013.01.022 http://www.sciencedirect.com/science/article/pii/S0022247X13000395 |
Idioma(s) |
eng |
Publicador |
San Diego |
Relação |
Journal of Mathematical Analysis and Applications |
Direitos |
restrictedAccess http://creativecommons.org/licenses/by-nc-nd/3.0/br/ Elsevier |
Palavras-Chave | #Inverse problems #Partial differential equations #Germain–Lagrange plate equation #Kirchhoff plate equation #EQUAÇÕES DIFERENCIAIS #PROBLEMAS INVERSOS |
Tipo |
article original article publishedVersion |