A uniqueness theorem for the determination of sources in the Germain–Lagrange plate equation


Autoria(s): Kawano, Alexandre
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

14/02/2014

14/02/2014

2013

Resumo

We prove a uniqueness result related to the Germain–Lagrange dynamic plate differential equation. We consider the equation {∂2u∂t2+△2u=g⊗f,in ]0,+∞)×R2,u(0)=0,∂u∂t(0)=0, where uu stands for the transverse displacement, ff is a distribution compactly supported in space, and g∈Lloc1([0,+∞)) is a function of time such that g(0)≠0g(0)≠0 and there is a T0>0T0>0 such that g∈C1[0,T0[g∈C1[0,T0[. We prove that the knowledge of uu over an arbitrary open set of the plate for any interval of time ]0,T[]0,T[, 0<T<T00<T<T0, is enough to determine uniquely f∈E′(R2)f∈E′(R2).

Identificador

http://www.producao.usp.br/handle/BDPI/44000

10.1016/j.jmaa.2013.01.022

http://www.sciencedirect.com/science/article/pii/S0022247X13000395

Idioma(s)

eng

Publicador

San Diego

Relação

Journal of Mathematical Analysis and Applications

Direitos

restrictedAccess

http://creativecommons.org/licenses/by-nc-nd/3.0/br/

Elsevier

Palavras-Chave #Inverse problems #Partial differential equations #Germain–Lagrange plate equation #Kirchhoff plate equation #EQUAÇÕES DIFERENCIAIS #PROBLEMAS INVERSOS
Tipo

article

original article

publishedVersion