729 resultados para Diagrama Forrester
Resumo:
The usual Ashkin-Teller (AT) model is obtained as a superposition of two Ising models coupled through a four-spin interaction term. In two dimension the AT model displays a line of fixed points along which the exponents vary continuously. On this line the model becomes soluble via a mapping onto the Baxter model. Such richness of multicritical behavior led Grest and Widom to introduce the N-color Ashkin-Teller model (N-AT). Those authors made an extensive analysis of the model thus introduced both in the isotropic as well as in the anisotropic cases by several analytical and computational methods. In the present work we define a more general version of the 3-color Ashkin-Teller model by introducing a 6-spin interaction term. We investigate the corresponding symmetry structure presented by our model in conjunction with an analysis of possible phase diagrams obtained by real space renormalization group techniques. The phase diagram are obtained at finite temperature in the region where the ferromagnetic behavior is predominant. Through the use of the transmissivities concepts we obtain the recursion relations in some periodical as well as aperiodic hierarchical lattices. In a first analysis we initially consider the two-color Ashkin-Teller model in order to obtain some results with could be used as a guide to our main purpose. In the anisotropic case the model was previously studied on the Wheatstone bridge by Claudionor Bezerra in his Master Degree dissertation. By using more appropriated computational resources we obtained isomorphic critical surfaces described in Bezerra's work but not properly identified. Besides, we also analyzed the isotropic version in an aperiodic hierarchical lattice, and we showed how the geometric fluctuations are affected by such aperiodicity and its consequences in the corresponding critical behavior. Those analysis were carried out by the use of appropriated definitions of transmissivities. Finally, we considered the modified 3-AT model with a 6-spin couplings. With the inclusion of such term the model becomes more attractive from the symmetry point of view. For some hierarchical lattices we derived general recursion relations in the anisotropic version of the model (3-AAT), from which case we can obtain the corresponding equations for the isotropic version (3-IAT). The 3-IAT was studied extensively in the whole region where the ferromagnetic couplings are dominant. The fixed points and the respective critical exponents were determined. By analyzing the attraction basins of such fixed points we were able to find the three-parameter phase diagram (temperature £ 4-spin coupling £ 6-spin coupling). We could identify fixed points corresponding to the universality class of Ising and 4- and 8-state Potts model. We also obtained a fixed point which seems to be a sort of reminiscence of a 6-state Potts fixed point as well as a possible indication of the existence of a Baxter line. Some unstable fixed points which do not belong to any aforementioned q-state Potts universality class was also found
Resumo:
In this work we study the phase transitions of the ferromagnetic three-color Ashkin-Teller Model in the hierarquical lattice generated by the Wheatstone bridge using real space renormalization group approach. With such technique we obtain the phase diagram and its critical points with respective critical exponents v. This model presents four phases: ferromagnetic, paramagnetic and two intermediates. Nine critical points were found, three of which are of Ising model type, three are of four states Potts model type, one is of eight states Potts model type and the last two which do not correspond to any Potts model with integer number of states. iv
Resumo:
Double radio sources have been studied since the discovery of extragalactic radio sources in the decade of 1930. Since then, several numerical studies and analytical models have been proposed seeking a better understanding of the physical phenomena that determines the origin and evolution of such objects. In this thesis, we intended to study the evolution problem of the double radio sources in two fronts: in the ¯rst we have developed an analytical self-similar model that represents a generalization of most models found in the literature and solve some existent problems related to the jet head evolution. We deal with this problem using samples of hot spot sizes to ¯nd a power law relation between the jet head dimension and the source length. Using our model, we were able to draw the evolution curves of the double sources in a PD diagram for both compact sources (GPS and CSS) and extended sources of the 3CR catalogue. We have alson developed a computation tool that allows us to generate synthetic radio maps of the double sources. The objective is to determine the principal physical parameters of those objects by comparing synthetic and observed radio maps. In the second front, we used numeric simulations to study the interaction of the extra- galactic jets with the environment. We simulated situations where the jet propagates in a medium with high density contrast gas clouds capable to block the jet forward motion, forming the distorted structures observed in the morphology of real sources. We have also analyzed the situation in which the jet changes its propagation direction due to a change of the source main axis, creating the X-shaped sources. The comparison between our simulations and the real double radio sources, enable us to determine the values of the main physical parameters responsible for the distortions observed in those objects
Resumo:
There is presently a worldwide interest in artificial magnetic systems which guide research activities in universities and companies. Thin films and multilayers have a central role, revealing new magnetic phases which often lead to breakthroughs and new technology standards, never thought otherwise. Surface and confinement effects cause large impact in the magnetic phases of magnetic materials with bulk spatially periodic patterns. New magnetic phases are expected to form in thin film thicknesses comparable to the length of the intrinsic bulk magnetic unit cell. Helimagnetic materials are prototypes in this respect, since the bulk magnetic phases consist in periodic patterns with the length of the helical pitch. In this thesis we study the magnetic phases of thin rare-earth films, with surfaces oriented along the (002) direction. The thesis includes the investigation of the magnetic phases of thin Dy and Ho films, as well as the thermal hysteresis cycles of Dy thin films. The investigation of the thermal hysteresis cycles of thin Dy films has been done in collaboration with the Laboratory of Magnetic Materials of the University of Texas, at Arlington. The theoretical modeling is based on a self-consistent theory developed by the Group of Magnetism of UFRN. Contributions from the first and second neighbors exchange energy, from the anisotropy energy and the Zeeman energy are calculated in a set of nonequivalent magnetic ions, and the equilibrium magnetic phases, from the Curie temperature up to the Nèel temperature, are determined in a self-consistent manner, resulting in a vanishing torque in the magnetic ions at all planes across the thin film. Our results reproduce the known isothermal and iso-field curves of bulk Dy and Ho, and the known spin-slip phases of Ho, and indicate that: (i) the confinement in thin films leads to a new magnetic phase, with alternate helicity, which leads to the measured thermal hysteresis of Dy ultrathin films, with thicknesses ranging from 4 nm to 16 nm; (ii) thin Dy films have anisotropy dominated surface lock-in phases, with alignment of surface spins along the anisotropy easy axis directions, similar to the known spin-slip phases of Ho ( which form in the bulk and are commensurate to the crystal lattice); and (iii) the confinement in thin films change considerably the spin-slip patterns of Ho.
Resumo:
A real space renormalization group method is used to investigate the criticality (phase diagrams, critical expoentes and universality classes) of Z(4) model in two and three dimensions. The values of the interaction parameters are chosen in such a way as to cover the complete phase diagrams of the model, which presents the following phases: (i) Paramagnetic (P); (ii) Ferromagnetic (F); (iii) Antiferromagnetic (AF); (iv) Intermediate Ferromagnetic (IF) and Intermediate Antiferromagnetic (IAF). In the hierarquical lattices, generated by renormalization the phase diagrams are exact. It is also possible to obtain approximated results for square and simple cubic lattices. In the bidimensional case a self-dual lattice is used and the resulting phase diagram reproduces all the exact results known for the square lattice. The Migdal-Kadanoff transformation is applied to the three dimensional case and the additional phases previously suggested by Ditzian et al, are not found
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Resumo:
In this work we have studied the effects of random biquadratic and random fields in spin-glass models using the replica method. The effect of a random biquadratic coupling was studied in two spin-1 spin-glass models: in one case the interactions occur between pairs of spins, whereas in the second one the interactions occur between p spins and the limit p > oo is considered. Both couplings (spin glass and biquadratic) have zero-mean Gaussian probability distributions. In the first model, the replica-symmetric assumption reveals that the system presents two pha¬ses, namely, paramagnetic and spin-glass, separated by a continuous transition line. The stability analysis of the replica-symmetric solution yields, besides the usual instability associated with the spin-glass ordering, a new phase due to the random biquadratic cou¬plings between the spins. For the case p oo, the replica-symmetric assumption yields again only two phases, namely, paramagnetic and quadrupolar. In both these phases the spin-glass parameter is zero. Besides, it is shown that they are stable under the Almeida-Thouless stability analysis. One of them presents negative entropy at low temperatures. We developed one step of replica simmetry breaking and noticed that a new phase, the biquadratic glass phase, emerge. In this way we have obtained the correct phase diagram, with.three first-order transition lines. These lines merges in a common triple point. The effects of random fields were studied in the Sherrington-Kirkpatrick model consi¬dered in the presence of an external random magnetic field following a trimodal distribu¬tion {P{hi) = p+S(hi - h0) +Po${hi) +pS(hi + h0))- It is shown that the border of the ferromagnetic phase may present, for conveniently chosen values of p0 and hQ, first-order phase transitions, as well as tricritical points at finite temperatures. It is verified that the first-order phase transitions are directly related to the dilution in the fields: the extensions of these transitions are reduced for increasing values of po- In fact, the threshold value pg, above which all phase transitions are continuous, is calculated analytically. The stability analysis of the replica-symmetric solution is performed and the regions of validity of such a solution are identified
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
In this thesis we analyze the effects that the presence of a near gas giant planet can cause in its host star. It has been argued that the star planet interaction can cause changes in the coronal and chromospheric stellar activity. With this in mind, we analyze a sample of 53 extrasolar planets orbiting F, G and K main sequence stars, among them three super-Earths. In this analysis, we look for evidence of changes in the chromospheric activity due to the proximity of the giant planet. We show that, so far, there is not enough evidence to support such a hypothesis. Making use of the same sample and also taking in account available data for the Solar System, we revisit the so-called magnetic Bode s law. This law proposes the existence of a direct relationship between magnetism and rotation. By using estimations for the stellar and planetary magnetic momentM and the angular momentumL, we construct a Blackett s diagram (logL logM). In this diagram is evident that the magnetic Bode s law is valid for both the Solar System and the new planetary systems
Resumo:
The interest in the systematic analysis of astronomical time series data, as well as development in astronomical instrumentation and automation over the past two decades has given rise to several questions of how to analyze and synthesize the growing amount of data. These data have led to many discoveries in the areas of modern astronomy asteroseismology, exoplanets and stellar evolution. However, treatment methods and data analysis have failed to follow the development of the instruments themselves, although much effort has been done. In present thesis, we propose new methods of data analysis and two catalogs of the variable stars that allowed the study of rotational modulation and stellar variability. Were analyzed the photometric databases fromtwo distinctmissions: CoRoT (Convection Rotation and planetary Transits) and WFCAM (Wide Field Camera). Furthermore the present work describes several methods for the analysis of photometric data besides propose and refine selection techniques of data using indices of variability. Preliminary results show that variability indices have an efficiency greater than the indices most often used in the literature. An efficient selection of variable stars is essential to improve the efficiency of all subsequent steps. Fromthese analyses were obtained two catalogs; first, fromtheWFCAMdatabase we achieve a catalog with 319 variable stars observed in the photometric bands Y ZJHK. These stars show periods ranging between ∼ 0, 2 to ∼ 560 days whose the variability signatures present RR-Lyrae, Cepheids , LPVs, cataclysmic variables, among many others. Second, from the CoRoT database we selected 4, 206 stars with typical signatures of rotationalmodulation, using a supervised process. These stars show periods ranging between ∼ 0, 33 to ∼ 92 days, amplitude variability between ∼ 0, 001 to ∼ 0, 5 mag, color index (J - H) between ∼ 0, 0 to ∼ 1, 4 mag and spectral type CoRoT FGKM. The WFCAM variable stars catalog is being used to compose a database of light curves to be used as template in an automatic classifier for variable stars observed by the project VVV (Visible and Infrared Survey Telescope for Astronomy) moreover it are a fundamental start point to study different scientific cases. For example, a set of 12 young stars who are in a star formation region and the study of RR Lyrae-whose properties are not well established in the infrared. Based on CoRoT results we were able to show, for the first time, the rotational modulation evolution for an wide homogeneous sample of field stars. The results are inagreement with those expected by the stellar evolution theory. Furthermore, we identified 4 solar-type stars ( with color indices, spectral type, luminosity class and rotation period close to the Sun) besides 400 M-giant stars that we have a special interest to forthcoming studies. From the solar-type stars we can describe the future and past of the Sun while properties of M-stars are not well known. Our results allow concluded that there is a high dependence of the color-period diagram with the reddening in which increase the uncertainties of the age-period realized by previous works using CoRoT data. This thesis provides a large data-set for different scientific works, such as; magnetic activity, cataclysmic variables, brown dwarfs, RR-Lyrae, solar analogous, giant stars, among others. For instance, these data will allow us to study the relationship of magnetic activitywith stellar evolution. Besides these aspects, this thesis presents an improved classification for a significant number of stars in the CoRoT database and introduces a new set of tools that can be used to improve the entire process of the photometric databases analysis
Resumo:
Galactic stellar clusters have a great variety of physical properties that make valuable probes of stellar and galactic chemical evolution. Current studies show a discrepancy between the standard evolutionary models and observations, mainly considering the level of mixing and convective dilution of light elements, as well as to the evolution of the angular momentum. In order to better settle some of these properties, we present a detailed spectroscopic analysis of 28 evolved stars, from the turn-off to the RGB, belonging to the stellar open cluster M67. The observations were performed using UVES+FLAMES at VLT/UT2. We determined stellar parameters and metallicity from LTE analysis of Fe I and Fe II lines between 420 1100 nm. The Li abundance was obtained using the line at 6707.78 ˚A, for the whole sample of stars. The Li abundances of evolved stars of M67 present a gradual decreasing when decreasing the effective temperature. The Li dilution factor for giant stars of M67 with Teff ∼ 4350K is at least 2300 times greater than that predicted by standard theory for single field giant stars. The Li abundance as a function of rotation exhibits a good correlation for evolved stars of M67, with a much smaller dispersion than the field evolved stars. The mass and the age seem to be some of the parameters that influence this connection. We discovered a Li-rich subgiant star in M67 (S1242). It is member of a spectroscopic binary system with a high eccentricity. Its Li abundance is 2.7, the highest Li content ever measured for an evolved star in M67. Two possibilities could explain this anomalous Li content: (i) preservation of the Li at the post turn off stage due to tidal effects, or (ii) an efficient dredge-up of Li, hidden below the convective zone by atomic diffusion occurring in the post turn off stage. We also study the evolution of the angular momentum for the evolved stars in M67. The results are in agreement with previous studies dedicated to evolved stars of this cluster, where stars in the same region of the CM-diagram have quite similar rotations, but with values that indicate an extra breaking along the main sequence. Finally, we analize the distributions of the average rotational velocity and of the average Li abundance as a function of age. With relation to the average Li abundances, stars in clusters and field stars present the same type of exponencial decay law t−β. Such decay is observed for ages lesser than 2 Gyr. From this age, is observed that the average Li abundance remain constant, differently of the one observed in the rotation age connection, where the average rotational velocity decreases slowly with age
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Ensaios de tração uniaxiais foram empregados para deformar aços inoxidáveis austeníticos do tipo 304, em diferentes temperaturas abaixo da ambiente (de 77 K a 300 K). A relação entre a estabilidade da austenita e o encruamento, em função da temperatura de teste, é discutida quanto à transformação martensítica induzida por deformação e ao deslizamento de discordâncias na austenita. em curvas tensão-deformação que assumem a equação de Ludwik sigma = sigmao + képsilonn, na qual sigma é a tensão verdadeira e e a elongação plástica verdadeira, um modo conveniente para analisar o encruamento é por meio do diagrama log dsigma / dépsilon versus log épsilon. O aspecto significativo é a variação da taxa de encruamento dsigma / dépsilon com a elongação plástica verdadeira nas diferentes temperaturas. As mudanças no comportamento do encruamento motivando até três estágios de deformação são associadas a diferentes processos microestruturais. A transformação martensítica pode ser considerada como um processo de deformação que compete com o processo usual de deslizamento. A investigação desses estágios, na região plástica, produz uma referência qualitativa de como diferentes fatores, tais como o grau de deformação, temperatura e composição química da austenita, afetam a transformação austenita-martensita.
Resumo:
This paper investigates a novel design approach for a vibration isolator for use in space structures. The approach used can particularly be applicable for aerospace structures that support high precision instrumentation such as satellite payloads. The isolator is a space-frame structure that is folded in on itself to act as a mechanical filter over a defined frequency range. The absence of viscoelastic elements in such a mounting makes the design suitable for use in a vacuum and in high temperature or harsh environments with no risk of drift in alignment of the structure. The design uses a genetic algorithm based geometric optimisation routine to maximise passive vibration isolation, and this is hybridised with a geometric feasibility search. To complement the passive isolation system, an active system is incorporated in the design to add damping. Experimental work to validate the feasibility of the approach is also presented, with the active/passive structure achieving transmissibility of about 19 dB over a range of 1-250 Hz. It is shown here that the use of these novel anti-vibration mountings has no or little consequent weight and cost penalties whilst maintaining their effectiveness with the vibration levels. The approach should pave the way for the design of anti-vibration mountings that can be used between most pieces of equipment and their supporting structure. Crown Copyright (C) 2011 Published by Elsevier Ltd. All rights reserved.