998 resultados para Dental bonding


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We successfully used the metal mediated-wafer bonding technique in transferring the as-grown cubic GaN LED structure of Si substrate. The absorbing GaAs substrate was removed by using the chemical solutions of NH4OH : H2O2=1 : 10. SEM and PL results show that wafer bonding technique could transfer the cubic GaN epilayers uniformly to Si without affecting the physical and optical properties of epilayers. XRD result shows that there appeared new peaks related to AgGa2 and Ni4N diffraction, indicating that the metals used as adhesive and protective layers interacted with the p-GaN layer during the long annealing process. It is just the reaction that ensures the reliability of the integration of GaN with metal and minor contact resistance on the interface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A model has been proposed for describing elastic deformation of wafer surfaces in bonding. The change of the surface shape is studied on the basis of the distribution of the periodic strain field. With the condition of diminishing periodic strain away from the interface, Airy stress function has been found that satisfies the elastic mechanical equilibrium. The result reveals that the wavy interface elastically deforms a spatial wavelength from the interface. (C) 2000 American Institute of Physics. [S0021-8979(00)04219-5].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bonding behavior of silicon wafers depends on activation energy for the formation of siloxane bonds. In this article we developed a quantitative model on the dynamics of silicon wafer bonding during annealing. Based on this model, a significant difference in the bonding behaviors is compared quantitatively between the native oxide bonding interface and the thermal oxide bonding interface. The results indicate that the bonding strength of the native oxide interface increases with temperature much more rapidly than that of the thermal oxide interface. (C) 2000 American Institute of Physics. [S0021-8979(00)05520-1].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel low temperature direct wafer bonding technology employing vacuum-cavity pre-bonding is proposed and applied in bonding of InGaAs/Si couple wafers under 300 degrees C and InP/GaAs couple wafers under 350 degrees C. Aligning accuracy of 0.5 mu m is achieved. During wafer bonding process the pressure on the couple wafers is 10MPa. The interface energy is sufficiently high to allow thinning of the wafers down from 350um to about 100um. And the tensile strength test indicates the bonding energy of bonded samples is about equal to the bonded samples at 550 degrees C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 1.55-mu m hybrid InGaAsP-Si laser was fabricated by the selective-area metal bonding method. Two Si blocking stripes, each with an excess-metals accommodated space, were used to separate the optical coupling area and the metal bonding areas. In such a structure, the air gap between the InGaAsP structure and Si waveguide has been reduced to be negligible. The laser operates with a threshold current density of 1.7 kA/cm(2) and a slope efficiency of 0.05 W/A under pulsed-wave operation. Room-temperature continuous lasing with a maximum output power of 0.45 mW is realized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

After illumination with 1-1.3 eV photons during cooling-down, metastable PH modes are observed by IR absorption at 5 K in semi-insulating InP:Fe. They correlate with the photo-injection of holes, but not with a change of the charge state of the K-related centres present at equilibrium. They are explained by a change of the bonding of H, induced by hole trapping, from IR-inactive centres to PH-containing centres, stable only below 80 K. One metastable centre has well-defined geometrical parameters and the other one could be located in a region near from the interface with (Fe,P) precipitates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In conjunction with ANSYS, we use the finite element method to analyze the bonding stresses of Si/GaAs. We also apply a numerical model to investigate a contour map and the distribution of normal stress,shearing stress,and peeling stress,taking into full consideration the thermal expansion coefficient as a function of temperature. Novel bonding structures are proposed for reducing the effect of thermal stress as compared with conventional structures. Calculations show the validity of this new structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

国家自然科学基金

Relevância:

20.00% 20.00%

Publicador:

Resumo:

于2010-11-23批量导入

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural properties for various SiCO isomers in the singlet and triplet states have been investigated using CASSCF methods with a 6-311 +G* basis set and also using three DFT and MP2 with same basis set for those systems except for the linear singlet state. The detailed bonding character is discussed, and the state-state correlations and the isomerization mechanism are also determined. Results indicate that there are four different isomers for each spin state, and for all isomers, the triplet state is more stable than the corresponding singlet state. The most stable is the linear SiCO ((3)Sigma(-)) species and may be refer-red to the ground state. At the CASSCF-MP2(full)/6-311+G* level, the state-state energy separations of the other triplet states relative to the ground state are 43.2 (cyclic), 45.2 (linear SiOC), and 75.6 kcal/mol (linear CSiO), respectively, whereas the triplet-singlet state excitation energies for each configuration are 17.3 (linear SiCO), 2.2 (cyclic SiCO), 10.2 (linear SiOC), and 18.5 kcal/mol (linear CSiO), respectively. SiCo ((3)Sigma(-)) may be classified as silene (carbonylsilene), and its COdelta- moiety possesses CO- property. The dissociation energy of the ground state is 42.5 kcal/mol at the CASSCF-MP2(full)/6-311+G* level and falls within a range of 36.5-41.5 kcal/mol at DFT level, and of 23.7-28.9 kcal/mol at the wave function-correlated level, whereas the vertical IP is 188.8 kcal/mol at the CASSCF-MP2(full)/6-311+G* level and is very close to the first IP of Si atom. Three linear isomers (SiCO, SiOC, and CSiO) have similar structural bonding character. SiOC may be referred to the iso-carbonyl Si instead of the aether compound, whereas the CSiO isomer may be considered as the combination of C (the analogue of Si) with SiO (the analogue of CO). The bonding is weak for all linear species, and the corresponding potential energy surfaces are flat, and thus these linear molecules are facile. Another important isomer is of cyclic structure, it may be considered as the combination of CO with Si by the side pi bond. This structure has the smallest triplet state-singlet state excitation energy (similar to2.2 kcal/mol); the C-O bonds are longer, and the corresponding vibrational frequencies are significantly smaller than those of the other linear species. This cyclic species is not classified as an epoxy compound. State-state correlation analysis and the isomerization pathway searches have indicated that there are no direct correlations among three linear structures for each spin state, but they may interchange by experiencing two transition states and one cyclic intermediate. The easiest pathway is to break the Si-O bond to go to the linear SiCO, but its inverse process is very difficult. The most difficult process is to break the C-O bond and to go to the linear CSiO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

National Natural Science Foundation of China [40771205]; National Science Fund for Distinguished Young Scholars [40625002]; Chinese Academy of Sciences [KZCX2-YW-315]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To find the pathologic cause of the children's dental fluorosis in southwestern China, diet structure before the age of 6 and prevalence rate of dental fluorosis (DF) of 405 children were investigated, and the fluorine and arsenic content of several materials were determined. The prevalence rate of DF of children living on roasted corn before the age of 6 is 100% with nearly 95% having the mild to severe DF; while that of children living on non-roasted corn or rice is less than 5% with all having very mild DF. The average fluorine and arsenic concentration are 20.26 mg/kg and 0.249 mg/kg in roasted corn, which are about 16 times and 35 times more than in non-roasted corn, respectively. The average fluorine concentration is 78 mg/kg in coal, 1116 mg/kg in binder clay and 313 mg/kg in briquette (coal mixed with clay). The average arsenic concentration of coal is 5.83 mg/kg, the binder clay is 20.94 mg/kg, with 8.52 mg/kg in the briquette. Living on roasted corn and chili is the main pathologic cause of endemic fluorosis in southwestern China. The main source of fluorine and arsenic pollution of roasted corn and chill is the briquette of coal and binder clay. (C) 2010 Elsevier B.V. All rights reserved.