664 resultados para Cytoskeleton
Resumo:
Abstract Background Bone fractures and loss represent significant costs for the public health system and often affect the patients quality of life, therefore, understanding the molecular basis for bone regeneration is essential. Cytokines, such as IL-6, IL-10 and TNFα, secreted by inflammatory cells at the lesion site, at the very beginning of the repair process, act as chemotactic factors for mesenchymal stem cells, which proliferate and differentiate into osteoblasts through the autocrine and paracrine action of bone morphogenetic proteins (BMPs), mainly BMP-2. Although it is known that BMP-2 binds to ActRI/BMPR and activates the SMAD 1/5/8 downstream effectors, little is known about the intracellular mechanisms participating in osteoblastic differentiation. We assessed differences in the phosphorylation status of different cellular proteins upon BMP-2 osteogenic induction of isolated murine skin mesenchymal stem cells using Triplex Stable Isotope Dimethyl Labeling coupled with LC/MS. Results From 150 μg of starting material, 2,264 proteins were identified and quantified at five different time points, 235 of which are differentially phosphorylated. Kinase motif analysis showed that several substrates display phosphorylation sites for Casein Kinase, p38, CDK and JNK. Gene ontology analysis showed an increase in biological processes related with signaling and differentiation at early time points after BMP2 induction. Moreover, proteins involved in cytoskeleton rearrangement, Wnt and Ras pathways were found to be differentially phosphorylated during all timepoints studied. Conclusions Taken together, these data, allow new insights on the intracellular substrates which are phosphorylated early on during differentiation to BMP2-driven osteoblastic differentiation of skin-derived mesenchymal stem cells.
Resumo:
Diffusion is a common phenomenon in nature and generally is associated with a system trying to reach a local or a global equilibrium state, as a result of highly irregular individual particle motion. Therefore it is of fundamental importance in physics, chemistry and biology. Particle tracking in complex fluids can reveal important characteristics of its properties. In living cells, we coat the microbead with a peptide (RGD) that binds to integrin receptors at the plasma membrane, which connects to the CSK. This procedure is based on the hypothesis that the microsphere can move only if the structure where it is attached move as well. Then, the observed trajectory of microbeads is a probe of the cytoskeleton (CSK), which is governed by several factors, including thermal diffusion, pressure gradients, and molecular motors. The possibility of separating the trajectories into passive and active diffusion may give information about the viscoelasticity of the cell structure and molecular motors activity. And also we could analyze the motion via generalized Stokes-Einstein relation, avoiding the use of any active techniques. Usually a 12 to 16 Frames Per Second (FPS) system is used to track the microbeads in cell for about 5 minutes. Several factors make this FPS limitation: camera computer communication, light, computer speed for online analysis among others. Here we used a high quality camera and our own software, developed in C++ and Linux, to reach high FPS. Measurements were conducted with samples for 10£ and 20£ objectives. We performed sequentially images with different intervals, all with 2 ¹s exposure. The sequences of intervals are in milliseconds: 4 5 ms (maximum speed) 14, 25, 50 and 100 FPS. Our preliminary results highlight the difference between passive and active diffusion, since the passive diffusion is represented by a Gaussian in the distribution of displacements of the center of mass of individual beads between consecutive frames. However, the active process, or anomalous diffusion, shows as long tails in the distribution of displacements.
Resumo:
The cellular rheology has recently undergone a rapid development with particular attention to the cytoskeleton mechanical properties and its main components - actin filaments, intermediate filaments, microtubules and crosslinked proteins. However it is not clear what are the cellular structural changes that directly affect the cell mechanical properties. Thus, in this work, we aimed to quantify the structural rearrangement of these fibers that may emerge in changes in the cell mechanics. We created an image analysis platform to study smooth muscle cells from different arteries: aorta, mammary, renal, carotid and coronary and processed respectively 31, 29, 31, 30 and 35 cell image obtained by confocal microscopy. The platform was developed in Matlab (MathWorks) and it uses the Sobel operator to determine the actin fiber image orientation of the cell, labeled with phalloidin. The Sobel operator is used as a filter capable of calculating the pixel brightness gradient, point to point, in the image. The operator uses vertical and horizontal convolution kernels to calculate the magnitude and the angle of the pixel intensity gradient. The image analysis followed the sequence: (1) opens a given cells image set to be processed; (2) sets a fix threshold to eliminate noise, based on Otsu's method; (3) detect the fiber edges in the image using the Sobel operator; and (4) quantify the actin fiber orientation. Our first result is the probability distribution II(Δθ) to find a given fiber angle deviation (Δθ) from the main cell fiber orientation θ0. The II(Δθ) follows an exponential decay II(Δθ) = Aexp(-αΔθ) regarding to its θ0. We defined and determined a misalignment index α of the fibers of each artery kind: coronary αCo = (1.72 ‘+ or =’ 0.36)rad POT -1; renal αRe = (1.43 + or - 0.64)rad POT -1; aorta αAo = (1.42 + or - 0.43)rad POT -1; mammary αMa = (1.12 + or - 0.50)rad POT -1; and carotid αCa = (1.01 + or - 0.39)rad POT -1. The α of coronary and carotid are statistically different (p < 0.05) among all analyzed cells. We discussed our results correlating the misalignment index data with the experimental cell mechanical properties obtained by using Optical Magnetic Twisting Cytometry with the same group of cells.
Resumo:
Chemical agents used in cancer therapy are associated with cell cycle arrest, activation or deactivation of mechanisms associated to DNA repair and apoptosis. However, due to the complexity of biological systems, the molecular mechanisms responsible for these activities are not fully understood. Thus, studies about gene and protein expression have shown promising results for understanding the mechanisms related to cellular responses and regression of cancer after chemotherapy. This study aimed to evaluate the gene and protein expression profiling in bladder transitional cell carcinoma (TCC) with different TP53 status after gemcitabine (1.56 μM) treatment. The RT4 (grade 1, TP53 wild type), 5637 (grade 2, TP53 mutated) and T24 (grade 3, TP53 mutated) cell lines were used. PCR arrays and mass spectrometry were used to analyze gene and protein expression, respectively. Morphological alterations were observed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results of PCR array showed that gemcitabine activity was mainly related to CDKN1A, GADD45A and SERTDA1 overexpression, and BAX overexpression only in the wild type TP53 cells. Mass spectrometry demonstrated that gemcitabine modulated the protein expression, especially those from genes related to apoptosis, transport of vesicles and stress response. Analyses using SEM and TEM showed changes in cell morphology independently on the cell line studied. The observed decreased number of microvillus suggests low contact among the cells and between cell and extracellular matrix; irregular forms might indicate actin cytoskeleton deregulation; and the reduction in the amount of organelles and core size might indicate reduced cellular metabolism. In conclusion, independently on TP53 status or grade of bladder tumor, gemcitabine modulated genes related to the cell cycle and apoptosis, that reflected in morphological changes indicative of future cell death.
Resumo:
Low level laser therapy is used as a treatment of several conditions, including inflammatory processes and wound healing. Possible changes in mechanical properties of cells, caused by illumination, are investigated with optical magnetic twisting cytometry (OMTC), which is a technique used to evaluate mechanical properties in cell culture. Ferromagnetic micro beads are bound to cell cytoskeleton, the beads are magnetized vertically and a horizontal twisting magnetic field is applied causing a torque that moves the beads and deforms the cell, the beads rotate and displace. Based on the lateral displacement of the beads, elastic shear and loss moduli are obtained. Samples of human bronchial epithelial cell culture were divided in two groups: one was illuminated with a 660 nm red laser, 30 mW power, 0.75 W/cm2 irradiance, during different time intervals, and the other one, the control group, was not illuminated. The values of the mechanical constants of the cells of the control group showed a tendency of increasing with the time out of the incubator. On the other hand, the illuminated group showed constancy on the behavior of both moduli, keeping the normal conditions of the cell culture. Those results indicate that illumination can induce cells to homeostasis, and OMTC is sensitive to observe departures from the steady conditions. Hence, OMTC is an important technique which can be used to aggregate knowledge on the light effect in cell cytoskeleton and even on the low level laser therapy mechanisms in inflammatory processes and/or wound healing.
Resumo:
Low level laser therapy is used as a treatment of several conditions, including inflammatory processes and wound healing. Possible changes in mechanical properties of cells, caused by illumination, are investigated with optical magnetic twisting cytometry (OMTC), which is a technique used to evaluate mechanical properties in cell culture. Ferromagnetic micro beads are bound to cell cytoskeleton, the beads are magnetized vertically and a horizontal twisting magnetic field is applied causing a torque that moves the beads and deforms the cell, the beads rotate and displace. Based on the lateral displacement of the beads, elastic shear and loss moduli are obtained. Samples of human bronchial epithelial cell culture were divided in two groups: one was illuminated with a 660 nm red laser, 30 mW power, 0.75 W/cm2 irradiance, during different time intervals, and the other one, the control group, was not illuminated. The values of the mechanical constants of the cells of the control group showed a tendency of increasing with the time out of the incubator. On the other hand, the illuminated group showed constancy on the behavior of both moduli, keeping the normal conditions of the cell culture. Those results indicate that illumination can induce cells to homeostasis, and OMTC is sensitive to observe departures from the steady conditions. Hence, OMTC is an important technique which can be used to aggregate knowledge on the light effect in cell cytoskeleton and even on the low level laser therapy mechanisms in inflammatory processes and/or wound healing.
Resumo:
The role of mitochondrial dysfunction in cancer has long been a subject of great interest. In this study, such dysfunction has been examined with regards to thyroid oncocytoma, a rare form of cancer, accounting for less than 5% of all thyroid cancers. A peculiar characteristic of thyroid oncocytic cells is the presence of an abnormally large number of mitochondria in the cytoplasm. Such mitochondrial hyperplasia has also been observed in cells derived from patients suffering from mitochondrial encephalomyopathies, where mutations in the mitochondrial DNA(mtDNA) encoding the respiratory complexes result in oxidative phosphorylation dysfunction. An increase in the number of mitochondria occurs in the latter in order to compensate for the respiratory deficiency. This fact spurred the investigation into the presence of analogous mutations in thyroid oncocytic cells. In this study, the only available cell model of thyroid oncocytoma was utilised, the XTC-1 cell line, established from an oncocytic thyroid metastasis to the breast. In order to assess the energetic efficiency of these cells, they were incubated in a medium lacking glucose and supplemented instead with galactose. When subjected to such conditions, glycolysis is effectively inhibited and the cells are forced to use the mitochondria for energy production. Cell viability experiments revealed that XTC-1 cells were unable to survive in galactose medium. This was in marked contrast to the TPC-1 control cell line, a thyroid tumour cell line which does not display the oncocytic phenotype. In agreement with these findings, subsequent experiments assessing the levels of cellular ATP over incubation time in galactose medium, showed a drastic and continual decrease in ATP levels only in the XTC-1 cell line. Furthermore, experiments on digitonin-permeabilised cells revealed that the respiratory dysfunction in the latter was due to a defect in complex I of the respiratory chain. Subsequent experiments using cybrids demonstrated that this defect could be attributed to the mitochondrially-encoded subunits of complex I as opposed to the nuclearencoded subunits. Confirmation came with mtDNA sequencing, which detected the presence of a novel mutation in the ND1 subunit of complex I. In addition, a mutation in the cytochrome b subunit of complex III of the respiratory chain was detected. The fact that XTC-1 cells are unable to survive when incubated in galactose medium is consistent with the fact that many cancers are largely dependent on glycolysis for energy production. Indeed, numerous studies have shown that glycolytic inhibitors are able to induce apoptosis in various cancer cell lines. Subsequent experiments were therefore performed in order to identify the mode of XTC-1 cell death when subjected to the metabolic stress imposed by the forced use of the mitochondria for energy production. Cell shrinkage and mitochondrial fragmentation were observed in the dying cells, which would indicate an apoptotic type of cell death. Analysis of additional parameters however revealed a lack of both DNA fragmentation and caspase activation, thus excluding a classical apoptotic type of cell death. Interestingly, cleavage of the actin component of the cytoskeleton was observed, implicating the action of proteases in this mode of cell demise. However, experiments employing protease inhibitors failed to identify the specific protease involved. It has been reported in the literature that overexpression of Bcl-2 is able to rescue cells presenting a respiratory deficiency. As the XTC-1 cell line is not only respiration-deficient but also exhibits a marked decrease in Bcl-2 expression, it is a perfect model with which to study the relationship between Bcl-2 and oxidative phosphorylation in respiratory-deficient cells. Contrary to the reported literature studies on various cell lines harbouring defects in the respiratory chain, Bcl-2 overexpression was not shown to increase cell survival or rescue the energetic dysfunction in XTC-1 cells. Interestingly however, it had a noticeable impact on cell adhesion and morphology. Whereas XTC-1 cells shrank and detached from the growth surface under conditions of metabolic stress, Bcl-2-overexpressing XTC-1 cells appeared much healthier and were up to 45% more adherent. The target of Bcl-2 in this setting appeared to be the actin cytoskeleton, as the cleavage observed in XTC-1 cells expressing only endogenous levels of Bcl-2, was inhibited in Bcl-2-overexpressing cells. Thus, although unable to rescue XTC-1 cells in terms of cell viability, Bcl-2 is somehow able to stabilise the cytoskeleton, resulting in modifications in cell morphology and adhesion. The mitochondrial respiratory deficiency observed in cancer cells is thought not only to cause an increased dependency on glycolysis but it is also thought to blunt cellular responses to anticancer agents. The effects of several therapeutic agents were thus assessed for their death-inducing ability in XTC-1 cells. Cell viability experiments clearly showed that the cells were more resistant to stimuli which generate reactive oxygen species (tert-butylhydroperoxide) and to mitochondrial calcium-mediated apoptotic stimuli (C6-ceramide), as opposed to stimuli inflicting DNA damage (cisplatin) and damage to protein kinases(staurosporine). Various studies in the literature have reported that the peroxisome proliferator-activated receptor-coactivator 1(PGC-1α), which plays a fundamental role in mitochondrial biogenesis, is also involved in protecting cells against apoptosis caused by the former two types of stimuli. In accordance with these observations, real-time PCR experiments showed that XTC-1 cells express higher mRNA levels of this coactivator than do the control cells, implicating its importance in drug resistance. In conclusion, this study has revealed that XTC-1 cells, like many cancer cell lines, are characterised by a reduced energetic efficiency due to mitochondrial dysfunction. Said dysfunction has been attributed to mutations in respiratory genes encoded by the mitochondrial genome. Although the mechanism of cell demise in conditions of metabolic stress is unclear, the potential of targeting thyroid oncocytic cancers using glycolytic inhibitors has been illustrated. In addition, the discovery of mtDNA mutations in XTC-1 cells has enabled the use of this cell line as a model with which to study the relationship between Bcl-2 overexpression and oxidative phosphorylation in cells harbouring mtDNA mutations and also to investigate the significance of such mutations in establishing resistance to apoptotic stimuli.
Resumo:
Charakterisierung synapsenassoziierter Proteine des Haushuhns(Gallus gallus domesticus) Die Familie der synapsenassoziierten Proteine (SAP) umfaßt bei Säugern vier Proteine: SAP90 (=PSD-95), SAP97, SAP102 (=PSD-93) und Chapsyn110. Die Proteine enthalten charakteristischerweise drei PDZ-Domänen, eine SH3-Domäne und eine GK-Domäne über die sie mit anderen Proteinen interagieren können. SAP können so Verbindungen zwischen Neurotransmitterrezeptoren und Signaltransduktionsmolekülen sowie dem Zytoskelett herstellen.In dieser Arbeit wurden die synapsenassoziierten Proteine des Huhns charakterisiert. Die cDNAs von SAP90, SAP97 und Chapsyn110 wurden sequenziert. Die cDNA von SAP102 wurde teilweise sequenziert. Die Analyse genomischer DNA durch PCR ergab, daß die SAP90- und SAP97-mRNA von einem Gen transkribiert werden. Die mRNA-Verteilung von SAP90, SAP97 und Chapsyn110 im Gehirn einen Tag alter Küken wurde mit in situ Hybridisierung untersucht. Die Verteilung der SAP90-mRNA und von NMDA-Rezeptoren im Gehirn des Huhns ist sehr ähnlich. Weiterhin wurde bei Küken untersucht, inwieweit SAP bei der Prägung eine Rolle spielen. Der relative mRNA-Gehalt von SAP90, SAP97 und Chapsyn110 wurde 30 Minuten, 5 Stunden und 10 Stunden nach einer akustische Prägung der Küken gemessen. Fünf Stunden nach akustischer Prägung war der Gehalt der SAP90-mRNA, im anterioren lateralen Hyperstriatum ventrale um 13% erhöht. Der mRNA-Gehalt in anderen Regionen und der anderen SAP-Gene war unverändert.
Resumo:
Im Rahmen meiner Arbeit wurden erstmals die Intermediärfilament-Proteine (IF-Proteine) des Sibirischen Störs Acipenser baeri (Strahlenflosser, Knorpelganoid) kloniert und sequenziert. Aus einer cDNA-Bank konnten die Sequenzen von 13 IF-Proteine gewonnen werden. Von insgesamt zehn Keratinen codieren sieben für Typ I-Keratine und drei für Typ II. Zusätzlich konnten noch Desmin, Vimentin und ein Lamin identifiziert werden. Je einem Typ I- (K13) und einem Typ-II-Keratin (K2) fehlen wenige Aminosäuren in der Head-Domäne.Cytoskelett-Präparationen aus Epidermis, Mitteldarm, Magen und Kieme wurden mittels 2D-PAGE aufgetrennt. Durch Einsatz des CKBB-Test und Immunoblots wurden die verschiedenen Typ I und II-Keratine sowie Desmin und Vimentin identifiziert. Die gewebsspezifische Expression der Keratine ermöglichte zumeist ihre Einteilung in 'E' (epidermal) und 'S' ('simple epithelial').Die MALDI-MS-Analyse einer 2D-PAGE-Koelektrophorese von Seitenflosse und Mitteldarm zeigte, daß die 34 vorhandenen Proteinflecke auf nur 13 verschiedene IF-Proteine zurückgehen. Neun dieser Flecke konnten Sequenzen zugewiesen werden. Zusammen mit den verbleibenden vier Proteinflecken ergeben sich für den Stör nunmehr insgesamt 17 bekannte IF-Proteine. Von drei biochemisch identifizierten IS-Keratinen kommt eines nur im Mitteldarm vor und nur einem konnte eine Sequenz zugeordnet werden (K18). Dem einzigen Typ IIS-Keratin konnte keine Sequenz zugeordnet werden, wahrscheinlich handelt es sich um dabei um das K8-Orthologe. Jedem der fünf Typ IE-Proteine konnte eine Sequenz zugeordnet werden (K10 bis K14), ebenso wie dem einzigen identifizierten Typ IIE-Keratin (K2). Von den Typ III-Proteinen wurden Desmin und Vimentin ihren Proteinflecken zugeordnet. Die nicht zugeordnete Sequenz aba-k1 codiert möglicherweise für ein IIE-Keratin, während aba-k15 vermutlich die Sequenz für ein IE-Keratin enthält. Bei den Proteinflecken, denen eine Sequenz zugeordnet werden konnten, kann für Aba-K2 die Zugehörigkeit zum IIE-Typ angenommen werden, während es sich bei Aba-K10 wahrscheinlich um ein IE-Keratin handelt.Durch Datenbankvergleiche und molekulare Stammbäume konnte die Zugehörigkeit der identifizierten Lamin-Sequenz zum B3-Subtyp der Vertebraten gezeigt werden.Die Daten der Biochemie und indirekten Immunfluoreszenzmikroskopie zeigen, daß Keratine in Epithelien und Vimentin in mesenchymalen Geweben vorkommen. Es existieren starke Hinweise, daß im letzten Gewebetyp Keratine auch koexprimiert werden. Desmin kommt in großen Mengen im Magen und im Mitteldarm vor und stellt dort das prominenteste Protein.Mit den gewonnenen Sequenzdaten wurden molekulare Stammbäume und Sequenzidentitäten berechnet. Die daraus resultierenden Konsequenzen für die Verwandtschaftsverhältnisse der verschiedenen IF-Proteine sowie der Wirbeltiere werden diskutiert.
Resumo:
Die Funktion von Dystroglycan in der Entwicklung des zentralen Nervensystems Der DAG ist ein oligomerer Proteinkomplex, der in den Muskelfasern die extrazelluläre Matrix mit dem Zytoskelett verbindet und dadurch der Muskulatur die mechanische Stabilität bei der Kontraktion verleiht. Mutationen des DAG sind die genetische Grundlage für verschiedene Formen von muskulären Dystrophien. Muskuläre Dystrophien sind Krankheiten, die neben einer Degeneration der Muskulatur auch verschiedene ZNS-Defekte aufweisen. Die Funktion des DAG im ZNS ist bisher unbekannt. Um seine Funktion im ZNS zu analysieren, wurde Huhn-Dystroglycan, eine zentrale Komponente des DAG, kloniert. Dystroglycan besteht aus dem extrazellulären Matrixprotein alpha-Dystroglycan und dem transmembranen beta-Dystroglycan. Beide Proteine werden vom selben Gen codiert und posttranslational gespalten. Die Huhn-Dystroglycan-Sequenz ist sehr homolog zu anderen Spezies. Antikörper hergestellt gegen die Interaktionsdomänen von alpha- und beta-Dystroglycan, wurden verwendet um die Interaktion von Dystroglycan selektiv an der Grenzfläche zwischen Gliazellendfüßen und Basallamina in der Retina zu stören. Die Antikörper wurden in vivo intravitreal in Augen von Hühnerembryoanen der Stadien E6 bis E10 injiziert. Die Injektion der Antikörper und entsprechender Fab-Fragmente führten zu schweren Veränderungen in der Retina, unter anderem Hyperproliferation, Auflösung der radialen Struktur der neuroepithelialen Zellen und einer veränderten Schichtung. Diese Ergebnisse deuten darauf hin, daß der DAG am Kontakt der radiären Glizellen zur Basalmembran beteiligt sind.
Resumo:
Alpha- und Beta-Dystroglycan, die zentralen Komponenten eines multimeren Dystrophin-assoziierten Proteinkomplexes wurden bislang im Wesentlichen in der Skelettmuskulatur charakterisiert. Dort stellt der DAG eine molekulare Verbindung zwischen dem Aktin-Zytoskelett der Muskelfaser und einer Basalmembran her, die die einzelne Muskelfaser umhüllt. Dystroglycan vermittelt auf diese Weise die mechanische Festigkeit der Muskelfasern während der Kontraktion. Außerdem dient der DAG als Gerüst für die Anlagerung von Proteinen. Mutationen in den strukturgebenden oder signaltransduzierenden Proteinen des DAG verursachen Muskeldystrophie. Besonders schwere Muskeldystrophien werden durch Mutationen hervorgerufen, die eine veränderte Glykosylierung von Dystroglycan und damit eine verminderte Bindung von alpha-Dystroglycan an Matrixproteine verursachen. Dies führt zu einer Beeinträchtigung der Basalmembranbiosynthese sowie sich daraus ergebende Störungen in der Migration, Schichtung und Differenzierung von Nervenzellen im ZNS. Welche Rolle Dystroglycan im sich entwickelnden ZNS spielt, sollte in dieser Arbeit an der Hühnerretina untersucht werden. Durch Anwendung der in ovo Elektroporation wurden zwei modifizierte Dystroglycankonstrukte in Neuroepithelzellen transfiziert. Die Überexpression eines verkürtzten Dystroglycanproteins, verursachte eine Abrundung der Neuroepithelzellen. Dies führte zur Hyperproliferation der Zellen deren Folge die Bildung von Verdickungen in der Retina war sowie eine verstärkte Bildung postmitotischer Neurone. Die Elektroporation eines nicht-spaltbaren Dystroglycans, führte im Gegensatz dazu zu einer Abnahme der Anzahl proliferierender und differenzierender Nervenzellen. Als Konsequenz veränderte sich die Orientierung der Axone von retinalen Ganglienzellen. Nach der Überexpression des verkürzten Dystroglycans verloren die Axone ihre zentripetale Orientierung auf den optischen Nerv, während die Elektroporation von Wt-Dystroglycan und nicht-spaltbarem Dystroglycan nur einen gelegentlichen Richtungswechsel der Axone verursachte. Die Daten zeigen, dass Dystroglycan einen entscheidenden Einfluss auf die Proliferation, Differenzierung und Polarität der Neuroepithelzellen ausübt. Dies geschieht vermutlich durch die Vermittlung der Adhäsion des Endfußes von Neuroepithelzellen an die Basalmembran. Die Veränderungen nach der Überexpression der modifizierten Dystroglycankonstrukte liefern möglicherweise eine Erklärung für den ZNS-Phänotyp der sich bei verschiedenen Formen von Muskeldystrophie zeigt.
Resumo:
NG2 is a transmembrane proteoglycan with two N-terminal LNS domains and a C-terminal PDZ-binding motif. It is expressed in the developing and adult CNS by oligodendroglial precursor cells and subpopulations of perisynaptic glia and elsewhere by many immature cell types. In order to elucidate the functions of the protein and the heterogenous cell population which expresses it, we undertook to identify and characterise interaction partners of the molecule. The presence of the C-terminal PDZ recognition site in NG2 suggested PDZ-domain proteins as intracellular binding partners. In this work, interaction between the PDZ protein Syntenin and NG2 has been characterised. Syntenin is known to be involved in plasma membrane dynamics, metastasis and adhesion. Syntenin may thus link NG2 to the cytoskeleton, mediating migration of developing oligodendrocytes to axonal tracts prior to myelination, as well as process movement of NG2+ perisynaptic glia. NG2 is involved in cell spreading and polyclonal antibodies against NG2 inhibit the migration of immature glia and cell lines expressing the molecule. In this work we have characterised the segments of the extracellular portion of NG2 that are involved in migration. We found that the extracellular region immediately preceding the transmembrane segment is most important for cell motility. As part of this thesis, biochemical approaches to identify a trans-binding ligand interacting with the extracellular part of NG2 was also explored.
Resumo:
Desmosomen sind hoch organisierte adhäsive interzelluläre Verbindungen, die benachbarte Zellen durch Verankerung mit den Intermediärfilamenten des Zytoskeletts miteinander verknüpfen und so Zellen und Geweben Stabilität verleihen. Die Adhäsionsmoleküle der Desmosomen sind die desmosomalen Cadherine. Diese transmembranen Glykoproteine gehen im Interzellulärraum Verbindungen mit den desmosomalen Cadherinen der Nachbarzelle ein und sind im zytoplasmatischen Bereich Anheftungspunkte für weitere an der Desmosomenbildung beteiligte Proteine. Ziel dieser Arbeit war die Untersuchung der Rolle von Desmoglein 2 (Dsg 2), einem in allen Epithelien exprimierten desmosomalen Cadherin. Da der konstitutive knock out von Dsg 2 embryonal letal ist, wurde im Rahmen dieser Doktorarbeit eine transgene Maus generiert, in der die Reduktion von Dsg 2 temporär regulierbar war (konditionaler knock down). Dazu wurde der Mechanismus der RNA Interferenz genutzt, wodurch Sequenz-spezifische, post-transkriptionelle Regulation von Genen möglich ist. Unter Verwendung eines über Cre/lox-induzierbaren Vektors wurden transgene Mäuse generiert, welche nach Induktion Dsg 2 shRNA exprimieren, die in der Zelle in siRNA umgewandelt wird und zum Abbau der Dsg 2 mRNA führt. Durch Verpaarung der generierten Dsg 2 knock down Maus mit der über Tamoxifen induzierbaren Cre Deleter knock in Mauslinie Rosa26CreERT2 konnte deutliche Reduktion der Dsg 2 Proteinmenge in Leber, Darm und Herz erreicht werden. In Immunfärbungen der Leber wurde zudem eine reduzierte Desmosomenbildung durch Expression der Dsg 2 shRNA detektiert. Die für diese Versuche generierte und getestete Rosa26CreERT2 Mauslinie ermöglichte jedoch nicht in allen Zellen eines Gewebes die komplette Aktivierung der Cre Rekombinase und damit die Expression der shRNA. Dadurch entstanden mosaikartige Wildtyp/knock down-Gewebe, in denen noch ausreichend Desmosomen gebildet wurden, um die Gewebestabilität und -struktur zu erhalten. Für eine funktionale Untersuchung von Dsg 2 in Zusammenhang mit der chronisch entzündlichen Darmerkrankung Colitis ulcerosa wurden die Dsg 2 knock down Mäuse mit Darm-spezifischen, induzierbaren Cre Deleter Mäusen (VillinCreERT2) verpaart. Nach Aktivierung der Cre Rekombinase mittels Tamoxifen wurde in bitransgenen Tieren über Gabe von Azoxymethan (AOM) und Dextransodiumsulfat (DSS) Colitis ulcerosa induziert. Diese entzündliche Erkrankung des Darms ist mit der Induktion von Darmtumoren assoziiert. Bereits nach einmaliger Induktion mit AOM/DSS wurde in der ersten endoskopischen Untersuchung eine starke Entzündung des Darmgewebes und die Ausbildung von flächig wachsenden Tumoren in den Dsg 2 knock down Tieren hervorgerufen. Es ist anzunehmen, dass durch knock down von Dsg 2, und die damit verbundene verminderte Desmosomenbildung und Zelladhäsion, Infiltration von Bakterien durch die epitheliale Barriere des Darms möglich war, und so die Entzündungsreaktion in der Darmmukosa verstärkte. In Zusammenhang mit Verlust der epithelialen Festigkeit durch verringerte Zellkontakte kam es zur Hyperproliferation der Darmmukosa, die sich in Ausbildung von flächigen Tumoren äußerte. In weiteren Experimenten müssen nun die Tumore und das entzündete Gewebe der Colitis-induzierten Mäuse mittels Immunfluoreszenz untersucht werden, um Veränderungen in der Desmosomenformation in situ detektieren zu können. Des Weiteren sind Verpaarungen der Dsg 2 knock down Maus mit anderen Cre Rekombinase exprimierenden Mauslinien möglich, um den Einfluss von Dsg 2 auch in anderen Geweben, beispielsweise im Herzen, zu untersuchen. Die hier vorgelegte Arbeit zeigt also erstmalig den ursächlichen Zusammenhang zwischen Dsg 2 und dem Auftreten von Colitis-assoziierten Tumoren in einem konditionalen RNAi-vermittelten knock down Tiermodell. Die Etablierung dieser Maus ist somit das erste konditionale Mausmodell, welches die bei vielen Krebspatienten gefundenen flachzellig wachsenden Tumore in vivo rekapituliert. Vorausschauend kann man sagen, dass mit Hilfe des im Rahmen dieser Doktorarbeit entwickelten Tiermodells wichtige Erkenntnisses über die Pathologie von Darmtumoren erbracht werden können, die unser Verständnis der Colitis-induzierten Tumorentstehung verbessern.
Resumo:
The nervous system is the most complex organ in animals and the ordered interconnection of neurons is an essential prerequisite for normal behaviour. Neuronal connectivity requires controlled neuronal growth and differentiation. Neuronal growth essentially depends on the actin and microtubule cytoskeleton, and it has become increasingly clear, that crosslinking of these cytoskeletal fractions is a crucial regulatory process. The Drosophila Spectraplakin family member Short stop (Shot) is such a crosslinker and is crucial for several aspects of neuronal growth. Shot comprises various domains: An actin binding domain, a plakin-like domain, a rod domain, calcium responsive EF-hand motifs, a microtubule binding Gas2 domain, a GSR motif and a C-terminal EB1aff domain. Amongst other phenotypes, shot mutant animals exhibit severely reduced dendrites and neuromuscular junctions, the subcellular compartmentalisation of the transmembrane protein Fasciclin2 is affected, but it is also crucially required in other tissues, for example for the integrity of tendon cells, specialised epidermal cells which anchor muscles to the body wall. Despite these striking phenotypes, Shot function is little understood, and especially we do not understand how it can carry out functions as diverse as those described above. To bridge this gap, I capitalised on the genetic possibilities of the model system Drosophila melanogaster and carried out a structure-function analysis in different neurodevelopmental contexts and in tendon cells. To this end, I used targeted gene expression of existing and newly generated Shot deletion constructs in Drosophila embryos and larvae, analyses of different shot mutant alleles, and transfection of Shot constructs into S2 cells or cultured fibroblasts. My analyses reveal that a part of the Shot C-terminus is not essential in the nervous system but in tendon cells where it stabilises microtubules. The precise molecular mechanism underlying this activity is not yet elucidated but, based on the findings presented here, I have developed three alternative testable hypothesis. Thus, either binding of the microtubule plus-end tracking molecule EB1 through an EB1aff domain, microtubulebundling through a GSR rich motif or a combination of both may explain a context-specific requirement of the Shot C-terminus for tendon cell integrity. Furthermore, I find that the calcium binding EF-hand motif in Shot is exclusively required for a subset of neuronal functions of Shot but not in the epidermal tendon cells. These findings pave the way for complementary studies studying the impact of [Ca2+] on Shot function. Besides these differential requirements of Shot domains I find, that most Shot domains are required in the nervous system and tendon cells alike. Thus the microtubule Gas2 domain shows no context specific requirements and is equally essential in all analysed cellular contexts. Furthermore, I could demonstrate a partial requirement of the large spectrin-repeat rod domain of Shot in neuronal and epidermal contexts. I demonstrate that this domain is partially required in processes involving growth and/or tissue stability but dispensable for cellular processes where no mechanical stress resistance is required. In addition, I demonstrate that the CH1 domain a part of the N-terminal actin binding domain of Shot is only partially required for all analysed contexts. Thus, I conclude that Shot domains are functioning different in various cellular environments. In addition my study lays the base for future projects, such as the elucidation of Shot function in growth cones. Given the high degree of conservation between Shot and its mammalian orthologues MACF1/ACF7 and BPAG1, I believe that the findings presented in this study will contribute to the general understanding of spectraplakins across species borders.
Resumo:
Das zytoplasmatische Zytoskelett besteht aus drei Filamentsystemen, die aus Aktin, Tubulin und Intermediärfilamentproteinen aufgebaut sind und dreidimensionale Netzwerke ausbilden. Das Intermediärfilamentsystem, dem vor allem mechanische Stabilisierungsfunktionen zugesprochen werden, unterscheidet sich von den anderen durch seine Fähigkeit, spontan aus seinen Polypeptiduntereinheiten ohne weitere Kofaktoren zu polymerisieren und durch seinen unpolaren Aufbau. Es ist bis heute unbekannt, wie Intermediärfilamentnetzwerke in vivo moduliert werden und wie ihre Anordnung in den Kontext des Gesamtzytoskeletts koordiniert wird. Am Beispiel der epithelialen Intermediärfilamentproteine, den Keratinen, sollte daher untersucht werden, wie und wo neue Intermediärfilamente entstehen, welche Bedeutung den anderen Filamentsystemen bei dem Netzwerkaufbau und –Turn-Over zukommen und wie die Netzwerkbildung gesteuert wird. Zur Beantwortung dieser Fragestellungen wurden Zellklone hergestellt, die fluoreszierende Keratine synthetisieren. In der Zelllinie SK8/18-2, deren gesamtes Netzwerk aus derartigen Chimären aufgebaut ist, konnten anhand von mikroskopischen Zeitrafferaufnahmen der Fluoreszenzmuster Keratinfilamentvorläufer (KFP) identifiziert und deren Dynamik direkt in lebenden Zellen verfolgt werden. Es konnte gezeigt werden, dass die KFP in einem Plasmamembran-nahen Bereich entstehen, in dem sie zuerst als punktförmige Partikel detektiert werden. Nach einer initialen, sphäroidalen Wachstumsphase elongieren die Partikel zu kleinen Filamentstückchen. Diese können miteinander fusionieren und werden über ihre Enden in das periphere Netzwerk integriert. Der Wachstumsprozess ist gekoppelt an eine kontinuierliche, langsame Bewegung in Richtung auf das Zellzentrum. Diese Motilität sistiert vollständig nach pharmakologisch induziertem Abbau der Aktinfilamente. In Zeitraffer-aufnahmen kann jedoch in derartig behandelten Zellen ein wesentlich schnellerer Transport, der in verschiedene Richtungen verläuft und durch lange Ruhephasen unterbrochen wird, beobachtet werden. Dieser Modus, der gelegentlich auch in unbehandelten Zellen gefunden wurde, ist abhängig von intakten Mikrotubuli. Erst durch Zerstörung der Aktinfilamente und der Mikrotubuli erlischt die Motilität der KFPs vollständig. Bei der Suche nach Regulatoren der Keratinnetzwerkbildung wurde die p38 MAPK als zentraler Faktor identifiziert. Erstmals konnte eine direkte räumliche und zeitliche Korrelation zwischen einer spezifischen Enzymaktivität durch Nachweis der phosphorylierten p38 MAPK, der daraus folgenden Phosphorylierung eines Keratins, hier Serin 73 des Keratin 8, und der daraus resultierenden Veränderung des Netzwerkaufbaus, d. h. der Ausbildung von Keratingranula, nachgewiesen werden. Diese koordinierten Veränderungen wurden in unterschiedlichen Stresssituationen in verschiedenen Zellsystemen und in Zellen mit mutierten Keratinen beobachtet. Genetische (shRNA) und pharmakologische Manipulationen der p38 MAPK-Aktivität deuten auf einen engen kausalen Zusammenhang hin.