New insights in osteogenic differentiation revealed by mass spectrometric assessment of phosphorylated substrates in murine skin mesenchymal cells


Autoria(s): Halcsik, Erik; Forni, Maria Fernanda Pereira de Araújo Demonte; Fujita, André; Verano Braga, Thiago ; Jensen, Ole ; Sogayar, Mari Cleide
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

11/12/2013

11/12/2013

2013

Resumo

Abstract Background Bone fractures and loss represent significant costs for the public health system and often affect the patients quality of life, therefore, understanding the molecular basis for bone regeneration is essential. Cytokines, such as IL-6, IL-10 and TNFα, secreted by inflammatory cells at the lesion site, at the very beginning of the repair process, act as chemotactic factors for mesenchymal stem cells, which proliferate and differentiate into osteoblasts through the autocrine and paracrine action of bone morphogenetic proteins (BMPs), mainly BMP-2. Although it is known that BMP-2 binds to ActRI/BMPR and activates the SMAD 1/5/8 downstream effectors, little is known about the intracellular mechanisms participating in osteoblastic differentiation. We assessed differences in the phosphorylation status of different cellular proteins upon BMP-2 osteogenic induction of isolated murine skin mesenchymal stem cells using Triplex Stable Isotope Dimethyl Labeling coupled with LC/MS. Results From 150 μg of starting material, 2,264 proteins were identified and quantified at five different time points, 235 of which are differentially phosphorylated. Kinase motif analysis showed that several substrates display phosphorylation sites for Casein Kinase, p38, CDK and JNK. Gene ontology analysis showed an increase in biological processes related with signaling and differentiation at early time points after BMP2 induction. Moreover, proteins involved in cytoskeleton rearrangement, Wnt and Ras pathways were found to be differentially phosphorylated during all timepoints studied. Conclusions Taken together, these data, allow new insights on the intracellular substrates which are phosphorylated early on during differentiation to BMP2-driven osteoblastic differentiation of skin-derived mesenchymal stem cells.

We would like to thank Marc Sylvester for his invaluable advices regarding quantitative proteomics, Marcella Nunes de Melo Braga (University of Southern Denmark) for helping to set up the dimethyl labeling, Giuseppe Palmisano (Harvard University) and Melanie Schultz (University of Southern Denmark) for advices regarding sample analysis in MS sample preparation and data analysis. The excellent technical assistance of Zizi de Mendonça, Debora Costa Lopes and Marluce C. Mantovani is also acknowledged. This project was supported by: BNDES, CAPES, CNPq, FAPESP (grant number 2008/53974-4),MCTI and MS-DECIT.

Identificador

BMC Cell Biology. 2013 Oct 22;14(1):47

1471-2121

http://www.producao.usp.br/handle/BDPI/43590

10.1186/1471-2121-14-47

http://www.biomedcentral.com/1471-2121/14/47

Idioma(s)

eng

Relação

BMC Cell Biology

Direitos

openAccess

Halcsik et al.; licensee BioMed Central Ltd. - This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Tipo

article