995 resultados para Cl- ions
Resumo:
Time-resolved Kerr rotation measurement in the (Ga,Mn)As diluted magnetic semiconductor allows direct observation of the dynamical properties of the spin system of the magnetic ions and the spin-polarized holes. Experimental results show that the magnetic ions can be aligned by the polarized holes, and the time scales of spin alignment and relaxation take place in tens and hundreds of picoseconds, respectively. The Larmor frequency and effective g factor obtained in the Voigt geometry show an unusual temperature dependence in the vicinity of the Curie temperature due to the exchange coupling between the photoexcited holes and magnetic ions. Such a spin coherent precession can be amplified or destructed by two sequential excitation pulses with circularly copolarized or oppositely polarized helicity, respectively. (c) 2006 American Institute of Physics.
Resumo:
Magnetophotoluminescence properties of Zn0.88Mn0.12Se thin films grown by metal-organic chemical vapor deposition on GaAs substrates are investigated in fields up to 10 T. The linewidth of the excitonic luminescence peaks decreases with the increasing magnetic field (< 1 T), but the peak energy is almost unchanged. There is a crossover of the photoluminescence intensities between interband and bound excitonic transitions as the magnetic field is increased to about 1 T. These behaviors are interpreted by the strong tuning of the local alloy disorder potential by the applied magnetic field. In addition, the magnetic field-induced suppression of the energy transfers from excitons to Mn2+ ions is also observed.
Resumo:
The magnetic semiconductor GdxSi1-x was prepared by low-energy dual ion-beam epitaxy. GdxSi1-x shows excellent magnetic properties at room temperature. A high magnetic moment of 10 mu(B) per Gd atom is observed. The high atomic magnetic moment is interpreted as being a result of the RKKY mechanism. The indirect exchange interaction between ions is strong at large distances due to the low state density of the carriers in the magnetic semiconductor.
Resumo:
The (Ga,Mn,N) samples were grown by the implantation of low-energy Mn ions into GaN/Al2O3 substrate at different elevated substrate temperatures with mass-analyzed low-energy dual ion beam deposition system. Auger electron spectroscopy depth profile of samples grown at different substrate temperatures indicates that the Mn ions reach deeper in samples with higher substrate temperatures. Clear X-ray diffraction peak from (Ga,Mn)N is observed in samples grown at the higher substrate temperature. It indicates that under optimized substrate temperature and annealing conditions the solid solution (Ga,Mn)N phase in samples was formed with the same lattice structure as GaN and different lattice constant. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Ferromagnetic semiconductor MnxGa1-xSb single crystals were fabricated by Mn-ions implantation, deposition, and the post annealing. Magnetic hysteresis-loops in the MnxGa1-xSb single crystals were obtained at room temperature (300 K). The structure of the ferromagnetic semiconductor MnxGa1-xSb single crystal was analyzed by Xray diffraction. The distribution of carrier concentrations in MnxGa1-xSb was investigated by electrochemical capacitance-voltage profiler. The content of Mn in MnxGa1-xSb varied gradually from x = 0.09 near the surface to x = 0 in the wafer inner analyzed by X-ray diffraction. Electrochemical capacitance-voltage profiler reveals that the concentration of p-type carriers in MnxGa1-xSb is as high as 1 X 10(21) cm(-3), indicating that most of the Mn atoms in MnxGa1-xSb take the site of Ga, and play a role of acceptors.
Resumo:
We propose a nonadiabatic scheme for geometric quantum computation with trapped ions. By making use of the Aharonov-Anandan phase, the proposed scheme not only preserves the globally geometric nature in quantum computation, but also provides the advantage of nonadiabaticity that overcomes the problem of slow evolution in the existing adiabatic schemes. Moreover, the present scheme requires only two atomic levels in each ion, making it an appealing candidate for quantum computation.
Resumo:
Carbon films with an open-ended structure were obtained by mass-selected ion-beam deposition technique at 800degreesC. Raman spectra show that these films are mainly sp(2)-bonded. In our case, threshold ion energy of 140 eV was found for the formation of such surface morphology. High deposition temperature and ion-beam current density are also responsible for the growth of this structure. Additionally, the growth mechanism of the carbon films is discussed in this article. It was found that the ions sputtered pits on the substrate in the initial stage play a key role in the tubular surface morphology. (C) 2002 American Vacuum Society.
Resumo:
Semiconducting gadolinium silicide GdxSi samples were prepared by mass-analyzed low-energy dual ion beam epitaxy technique. Auger electron spectroscopy depth profiles indicate that the gadolinium ions are implanted into the single-crystal silicon substrate and formed 20 nm thick GdxSi film. X-ray double-crystal diffraction measurement shows that there is no new phase formed. The XPS spectra show that one type of silicon peaks whose binding energy is between that of silicide and silicon dioxide, and the gadolinium peak of binding energy is between that of metal Gd and Gd2O3. All of these results indicate that an amorphous semiconductor is formed. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Nanocrystalline diamond films were grown by a two-step process on Si(1 0 0) substrate, which was first pretreated by pure carbon ions bombardment. The bombarded Si substrate was then transformed into a hot-filament chemical vapor deposition (HFCVD) system for further growth. Using the usual CH4/H-3 feed gas ratio for micro crystalline diamond growth, nanodiamond crystallites were obtained. The diamond nucleation density is comparable to that obtained by biasing the substrate. The uniformly distributed lattice damage is proposed to be responsible for the formation of the nanodiamond. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The (Ga,Mn,As) compounds were obtained by the implantation of Mn ions into semi-insulating GaAs substrate with mass-analyzed low energy dual ion beam deposition technique. Auger electron spectroscopy depth profile of a typical sample grown at the substrate temperature of 250degreesC showed that the Mn ions were successfully implanted into GaAs substrate with the implantation depth of 160 nm. X-ray diffraction was employed for the structural analyses of all samples. The experimental results were greatly affected by the substrate temperature. Ga5.2Mn was obtained in the sample grown at the substrate temperature of 250degreesC. Ga5.2Mn, Ga5Mn8 and Mn3Ga were obtained in the sample grown at the substrate temperature of 400degreesC. However, there is no new phase in the sample grown at the substrate temperature of 200degreesC. The sample grown at 400degreesC was annealed at 840degreesC. In this annealed sample Mn3Ga disappeared, Ga5Mn8 tended to disappear,Ga5.2Mn crystallized better and a new phase of Mn2As was generated. (C) 2002 Elsevier Science B,V. All rights reserved.
Resumo:
Semiconducting manganese silicide, Mn27Si47 and Mn15Si26, were obtained using mass-analyzed low energy dual ion beam epitaxy technique, Auger electron spectroscopy depth profiles showed that some of the Mn ions were deposited on single-crystal silicon substrate and formed a 37.5 nm thick Mn film, and the other Mn ions were successfully implanted into the Si substrate with the implantation depth of 618 nm. Some samples were annealed in the atmosphere of flowing N-2 at 840 degreesC. X-ray diffraction measurements showed that the annealing was beneficial to the formation of Mn27Si47 and Mn15Si26 (C) 2001 Published by Elsevier Science B.V.
Resumo:
Intense near infrared emission was observed from Al3+ and Yb3+ ions co-implanted SiO2 film on silicon. It was found that the addition of Al3+ ions could remarkably improve the photoluminescence efficiency of Yb3+-implanted SiO2 film. No excitation power saturation was observed and trivial temperature quenching factor of 2 was achieved.
Resumo:
Charge trapping in the fluorinated SIMOX buried oxides before and after ionizing radiation has been investigated by means of C-V characteristics. Radiation-induced positive charge trapping which results in negative shift of C-V curves can be restrained by implanting fluorine ions into the SIMOX buried oxides. Pre-radiation charge trapping is suppressed in the fluorinated buried oxides. The fluorine dose and post-implantation anneal time play a very important role in the control of charge trapping.
Resumo:
Ionizing radiation response of partially-depleted MOS transistors fabricated in the, fluorinated SIMOX wafers has been investigated. The experimental data show that the, radiation-induced threshold voltage shift of PMOSFETs and NMOSFETs, as well as the radiation-induced increase of off-state leakage current of NMOSFETs can be restrained by implanting fluorine ions into the buried oxide of SIMOX wafers.
Resumo:
A novel Nd3+-doped lead fluorosilicate glass (NPS glass) is prepared by a two-step melting process. Based on the absorption spectrum a Judd-Ofelt theory analysis is made. The emission line width of NPS glass is 44.2nm. The fluorescence decay lifetime of the 4F3/2 level is 586±20μsec, and the stimulated emission cross-section is 0.87×10-20cm2 at 1056nm. A laser oscillation is occurred at 1062nm when pumped by 808nm Diode Laser. The slope efficiency is 23.7% with a 415mJ threshold. It is supposed that NPS glass is a good candidate for using in ultra-short pulse generation and amplification by the broad emission bandwidth and long fluorescence lifetime.