882 resultados para Chemistry, multidisciplinary
Resumo:
A method using Liquid Phase Microextraction for simultaneous detection of citalopram (CIT), paroxetine (PAR) and fluoxetine (FLU), using venlafaxine as internal standard, in plasma by high performance liquid chromatography with fluorescence detection was developed. The linearity was evaluated between 5.0 and 500 ng mL(-1) (r > 0.99) and the limit of quantification was 2.0, 3.0 and 5.0 ng mL-1 for CIT. PAR and FLU, respectively. Therefore, it can be applied to therapeutic drug monitoring, pharmacokinetics or bioavailability studies and its advantages are that it necessary relatively inexpensive equipment and sample preparation techniques.
Resumo:
PHYSICO-CHEMICAL EVALUATION OF AN EFFLUENT TREATED IN ANAEROBIC BIODIGESTER REGARDING ITS EFFICIENCE AND APPLICATION AS FERTILIZER. The use of biodigester for basic and environmental sanitation has large demand in Brazil. A biodigester was built to treat conjunctly the human and pig feces and urine, regarding to its future application in rural small towns. The results show that the biodigester can reduce 90% of COD and BOD and, up to 99.99% of thermotolerant coliforms. The treated effluent has variable quantities of macro- and micro-nutrients; and organic matter. However, the concentration variability of the nutrients makes difficult a dosed application into soil. The soluble salts (mainly as Na+ form) make necessary a controlled use to avoid environmental degradation.
Resumo:
To assess topical delivery studies of glycoalkaloids, an analytical method by HPLC-UV was developed and validated for the determination of solasonine (SN) and solamargine (SM) in different skin layers, as well as in a topical formulation. The method was linear within the ranges 0.86 to 990.00 mu g/mL for SN and 1.74 to 1000.00 mu g/mL for SM (r = 0.9996). Moreover, the recoveries for both glycoalkaloids were higher than 88.94 and 93.23% from skin samples and topical formulation, respectively. The method developed is reliable and suitable for topical delivery skin studies and for determining the content of SN and SM in topical formulations.
Resumo:
DEVELOPMENT AND VALIDATION OF A HPLC METHOD FOR QUANTIFICATION OF URSOLIC ACID IN SOLID DISPERSIONS. Ursolic acid is a natural molecule that presents several pharmacological properties. In this work, an analytical method by RP-HPLC has been developed and validated for quantification of this drug in the solid dispersions, using PEG 6000 and Poloxamer 407 as polymers. The method was specific, linear in the range of 1.0-50.0 mu g mL(-1) (r<0.99), precise (CV < 5% for both inter-and intra-assays), accurate (maximum deviation of +/- 13%), and robust to the parameters evaluated. This method has proved to be simple and useful for ursolic acid determination in solid dispersions, enabling its determination in pharmaceutical dosage form.
Resumo:
DEVELOPMENT AND VALIDATION OF AN ANALYTICAL METHOD FOR QUANTITATION OF THE DRUG BEVACIZUMAB BY HIGH PERFORMANCE LIQUID CHROMATOGRAPHY. In this study, an analytical method was developed and validated for quantitation of the drug bevacizumab (Avastin (R)) by high performance liquid chromatography (HPLC). The HPLC column was a BioSuite 250 (R) HR SEC, 300 x 7.8 mm x 5 mu m (Waters, USA). The mobile phase consisted of phosphate buffered saline (PBS). The results revealed that the method was specific, precise. accurate, robust and linear (r(2) = 0.998) from 5 to 75 mu g mL(-1). Therefore, this method can be used in drug release studies or in quality control ampoules of the drug.
Resumo:
Polythiophene (PTh) phase electropolymerized on the stainless steel wire was evaluated as solid-phase microextraction (SPME), and analysis by liquid chromatography with spectrophotometric detection (LC-UV) for determination of new-generation antidepressants, selective serotonin reuptake inhibitors (SSRIs) (citalopram, paroxetine, fluoxetine and sertraline), in plasma samples. The influence of electropolymerization variables (scan rate, potential range and scan cycles) was evaluated on SPME performance. The SPME variables (extraction time, temperature, matrix pH, ionic strength and desorption procedure), as well as the influence of plasma proteins on sorption mechanisms were also evaluated. The SPME/LC-UV method developed for determination of antidepressants in plasma sample presented a linear range between the limit of quantification (LOQ, 200-250 ng mL(-1)) to 4000 ng mL(-1), and interday precision with coefficient of variation (CV) ranged from 11 to 15%. The proposed method can be a useful tool for the determination of antidepressants in human plasma samples in urgent toxicological analysis after the accidental or suicidal intake of higher doses of medications.
Resumo:
ACID-BASE REACTIONS: CONCEPT, REPRESENTATION AND GENERALIZATION FROM THE ENERGY INVOLVED IN TRANSFORMATIONS. Undergraduate students on the first year of Chemistry Courses are unfamiliar with the representation of acid-base reactions using the ionic equation H+ + OH- -> H2O. A chemistry class was proposed about acid-base reactions using theory and experimental evaluation of neutralization heat to discuss the energy involved when water is formed from H+ and OH- ions. The experiment is suggested using different strong acids and strong base pairs. The presentation of the theme within a chemistry class for high school teachers increased the number of individuals that saw the acid-base reaction from this perspective.
Resumo:
In this paper, the isolation of dillapiole (1) from Piper aduncum was reported as well as the semi-synthesis of two phenylpropanoid derivatives [di-hydrodillapiole (2), isodillapiole (3)], via reduction and isomerization reactions. Also, the compounds' molecular properties (structural, electronic, hydrophobic, and steric) were calculated and investigated to establish some preliminary structureactivity relationships (SAR). Compounds were evaluated for in vitro antileishmanial activity and cytotoxic effects on fibroblast cells. Compound 1 presented inhibitory activity against Leishmania amazonensis (IC50?=?69.3 mu M) and Leishmania brasiliensis (IC50?=?59.4 mu M) and induced cytotoxic effects on fibroblast cells mainly in high concentrations. Compounds 2 (IC50?=?99.9 mu M for L. amazonensis and IC50?=?90.5 mu M for L. braziliensis) and 3 (IC50?=?122.9 mu M for L. amazonensis and IC50?=?109.8 mu M for L. brasiliensis) were less active than dillapiole (1). Regarding the molecular properties, the conformational arrangement of the side chain, electronic features, and the hydrophilic/hydrophobic balance seem to be relevant for explaining the antileishmanial activity of dillapiole and its analogues.
Resumo:
Low liquid-solid ratio (LSR) can be used to obtain high-content xylo-oligosaccharide (XOS) spend liquor by hot water pretreatment. Developing a technology based on low LSR results in more efficient water usage in the system and thus in lower capital and operating costs. Xylans from xylan rich agro-industrial waste are abundant hemicellulosic polymers with enormous potential for industrial applications. Currently, freeze-dried xylo-oligosaccharides are used as bio-based polymers and hydrolysates containing high xylose contents are converted to several chemical products. In this study, sugarcane bagasse was treated with water at low LSRs and mild temperatures in order to assess the effects of varying the pretreatment conditions on the xylo-oligosaccharide and xylose concentrations, and use a central composite experimental design to optimize the process parameters. The pretreatments were performed in the ranges temperature: 143.3-176.7 degrees C, time: 20-70 min and LSR: 1 : 1 to 11 : 1 (g g(-1)). The maximum concentrations of xylose and xylan were 13.76 and 36.18 g L-1 (equivalent to 48.29 g L-1 of xylan), respectively, which were achieved by treating bagasse at 170 degrees C for 60 min, with LSR of 3 g g(-1). The amount of xylan removed under these conditions was almost 57%. The soluble xylan consisted mainly of xylo-oligosaccharides (74 wt% of the identified compound in the spent liquor).
Resumo:
PHYTOCHEMICAL AND CHEMOSYSTEMATICS STUDIES OF Conchocarpus marginatus AND C. inopinatus (Rutaceae). Phytochemical studies of the leaves and stem have led to the identification of the known acridone alkaloids arborinine, methylarborinine, 1-hydroxy-3-methoxy-N-methyl acridone, xanthoxoline, 1,2,3,5-tetramethoxy-N-methylacridone, toddaliopsin C and the new seco acridone alkaloid inopinatin. The known quinoline alkaloids 2-phenyl-1-methyl-quinolin-4(1H)-one, 2-phenyl-1-methyl-7-methoxy-quinolin-4(1H)-one, dictamnine, and the coumarins scopoletin and marmesin were also isolated. The isolated compounds and the distribution of secondary metabolites, which are systematically important, obtained from literature, clearly confirmed that some species formerly described in the genera Angostura and Galipea in fact shall belong to the genus Conchocarpus.
Resumo:
Cyanobacteria are widely distributed in the environment and may be an effective and economic alternative for removing dyes from textile industry effluents. The present work investigated the potential of six cyanobacterial strains in decolorizing eleven types of textile dyes. The maximum absorbance of each dye was verified using a spectrophotometer. Mass spectrometry was used to verify the removal and possible degradation of dyes by the cyanobacteria. The results showed that all of the evaluated cyanobacteria were able to remove indigo, palanil yellow, indanthrene yellow, indanthrene blue, dispersol blue, indanthrene red and dispersol red by more than 50%. The Brazilian isolate Phormidium sp. CENA135 was able to decolorize and completely remove indigo blue BANN 30. This study confirmed the capacity of cyanobacteria to decolorize and possibly to structurally degrade different textile dyes, suggesting the possibility of their application in bioremediation studies.
Resumo:
DETERMINATION OF KINETIC AND THERMODYNAMIC PARAMETERS OF L-CYSTEINE ADSORPTION ONTO GOLD BY THE QCM TECHNIQUE. This article discusses the adsorption kinetics of a L-cysteine monolayer onto a gold surface by means of information obtained through the QCM technique. The results indicate that the adsorption process is rapid and follows the Langmuir isotherm, in which adsorption and desorption are considered. From these measurements the following parameter values were obtained: k(d) = (4.2 +/- 0.4) x 10(-3) s(-1), k(a) = 75 +/- 6 M-1 s(-1), K-eq=(1.8 +/- 0.3) x 10(4) M-1 and Delta G(ads) = -(5.8 +/- 0.2) kcal mol(-1).
Resumo:
This work describes the covalent immobilization of an ironporphyrin, 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin iron(III) chloride (FeTFPP), onto maghemite/silica magnetic nanospheres covered with aminofunctionalized silica. The resulting material (gamma-Fe2O3/SiO2-NHFeP) was characterized by diffuse reflectance infrared spectroscopy (DRIFTS) and UV-Vis absorption spectroscopy. The catalytic activity of this magnetic ironporphyrin was investigated in the oxidation of hydrocarbons (styrene, (Z)-cyclooctene and R-(+)-limonene) and an herbicide (simazine) by hydrogen peroxide or 3-chloroperoxybenzoic acid. Hydrocarbon and simazine oxidation reaction products were analyzed by gas chromatography (GC) and high performance liquid chromatography (HPLC), respectively. This catalytic system proved to be efficient and selective for hydrocarbon oxidation, leading to high product yields from styrene (89%), cyclooctene (71%) and R-(+) -limonene (86%). Simazine oxidation was attained with 100% selectivity for a dechlorinated product (OEAT), while several oxidation products were obtained for the same catalyst in homogeneous media. The catalyst can be easily recovered through application of an external magnetic field and washed after reaction. Catalyst reuse experiments for R-(+)-limonene oxidation have shown that the catalytic activity is kept at 90% after 10 consecutive reactions.
Resumo:
Losartan is an antihypertensive agent that lost its patent protection in 2010, and, consequently, it has been available in generic form. The latter motivated the search for a rapid and precise alternative method. Here, a simple conductometric titration in aqueous medium is described for the losartan analysis in pharmaceutical formulations. The first step of the titration occurs with the protonation of losartan producing a white precipitate and resulting in a slow increase in conductivity. When the protonation stage is complete, a sharp increase in conductivity occurs which was determined to be due to the presence of excess of acid. The titrimetric method was applied to the determination of losartan in pharmaceutical products and the results are comparable with values obtained using a chromatographic method recommended by the United States Pharmacopoeia. The relative standard deviation for successive measurements of a 125 mg L-1 (2.71x10(-4) mol L-1) losartan solution was approximately 2%. Recovery study in tablet samples ranged between 99 and 102.4%. The procedure is fast, simple, and represents an attractive alternative for losartan quantification in routine analysis. In addition, it avoids organic solvents, minimizes the risk of exposure to the operator, and the waste treatment is easier compared to classical chromatographic methods.
Resumo:
The chemiluminescent reactions of bis(2,4,6-trichlorophenyl)oxalate (TCPO) and bis(2-nitrophenyl)oxalate (2-NPO) with hydrogen peroxide in acetonitrile/water micellar systems (anionic, cationic, and non-ionic) and gamma-cyclodextrin were studied in the presence of fluoranthene or 9,10-diphenylanthracene, imidazole, and two buffer solutions, HTRIS+/TRIS and H2PO4-/HPO42-. The relative chemiluminenscence (CL) intensity is higher in the presence of the cationic (DDAB, CTAC, DODAC, and OTAC), anionic (SDS), and non-ionic (Tween 80) surfactants. In the presence of some non-ionic surfactants (Brij 35, Brij 76, and Tween 20), the CL intensity was partially quenched compared with the reaction with no surfactant. The sensitivity for hydrogen peroxide determination in the range 0.01 x 10(-4) to 1.0 x 10(-4) mol L-1, considering the slope of the calibration curves (maximum peak height of CL vs. concentration), improved with the introduction of DDAH, CTAB, and SDS in HTRIS+/TRIS buffer.