1000 resultados para GAAS PHOTOCATHODES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

High dose Mn was implanted into semi-insulating GaAs substrate to fabricate embedded ferromagnetic Mn-Ga binary particles by mass-analyzed dual ion beam deposit system at room temperature. The properties of as-implanted and annealed samples were measured with X-ray diffraction, high-resolution X-ray diffraction to characterize the structural changes. New phase formed after high temperature annealing. Sample surface image was observed with atomic force microscopy. All the samples showed ferromagnetic behaviour at room temperature. There were some differences between the hysteresis loops of as-implanted and annealed samples as well as the cluster size of the latter was much larger than that of the former through the surface morphology. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effects of SiO2 encapsulation and rapid thermal annealing on the optical properties of a GaNAs/GaAs single quantum well (SQW) are studied by low-temperature photoluminescence (LTPL). After annealing at 800degreesC for 30s, a blueshift of the LTPL peak energy for the SiO2-capped region is 25meV and that for the bare region is 0.8meV. The results can attribute to the nitrogen reorganization in the GaNAs/GaAs SQW. It is also shown that the nitrogen reorganization can be obviously enhanced by SiO2 cap-layer. A simple model is used to describe the SiO2-enhanced blueshift of the LTPL peak energy. The estimated activation energy of the N atomic reorganization for the samples annealing with and without SiO2 cap-layer are 2.9eV and 3.1eV, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photoluminescence (PL) spectra of the GaInNAs/GaAs single quantum well (SQW) with different N compositions are carefully studied in a range of temperatures and excitation power densities. The anomalous S-shape temperature dependence of the PL peak is analysed based on the competition and switching-over between the peaks related to N-induced localized states and the peak related to interband excitonic recombination. It is found that with increasing N composition, the localized energy increases and the turning point of the S-shape temperature dependence occurs at higher temperature, where the localized carriers in the bandtail states obtain enough thermal activation energy to be dissociated and delocalized. The rapid thermal annealing (RTA) effectively reduces the localized energy and causes a decrease of the switching-over temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antiphase dynamics has been observed experimentally for the laser modes operation in a laser-diode-pumped Q-switched microchip Yb:YAG laser with GaAs as a saturable absorber in the presence of spatial hole-burning. The Q-switched pulses sequences of two modes at different pump power have been obtained. The experimental results have shown that the pulses sequences displayed classic antiphase dynamics. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-aligned InAs quantum wires (QWRs) or three-dimensional (3D) islands are fabricated on GaAs(331)A substrates by molecular beam epitaxy (MBE). InAs QWRs are selectively grown on the step edges formed by GaAs layers. The surface morphology of InAs nanostructures is carefully investigated by atomic force microscopy (AFM) measurements. Different growth conditions, such as substrate temperature, growth approaches, and InAs coverage, exert a great effect on the morphology of InAs islands. Low substrate temperatures favour the formation of wirelike nanostructures, while high substrate temperatures favour 3D islands. The shape transition is attributed to the trade-off between surface energy and strain energy. A qualitative agreement of our experimental data with the theoretical results derived from the model proposed by Tersoff and Tromp is achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A columnal islands system, which was composed of three layers of self-assembled InAs/GaAs quantum dots (QDs), has been fabricated by solid-source molecular beam epitaxy (MBE) through S-K mode on a (100) semi-insulating GaAs substrate. The effects of the thickness of GaAs space layer, the growth interruption time and the amount of InAs deposition on the emission wavelength of columnal islands were presented. The image of atomic force microscopy (AFM) indicated the columnal islands with high uniformity in size and shape. At room temperature, the emission wavelength of columnal islands with different effective heights was achieved 1.32 and 1.4 mum; however, the emission wavelength of single-layer QDs with normal height was just 1. l mum. It provides a useful and intuitive approach to artificially control the emission wavelength of a QD material system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using Keating's semiempirical valence force field model and Monte Carlo simulation, we calculate the bond distributions and atom positions of GaAs/GaInNAsSb superlattices. The electronic structures of the superlattices are calculated using the folded spectrum method combined with an empirical pseudopotential proposed by Williamson The effects of N and Sb on superlattice energy levels are discussed. The deterioration of the optical properties induced by N is explained by the localization of the conduction-band states around the N atom. The electron and hole effective masses of the superlattices are calculated and compared with the effective masses of the GaAs and GaInAs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photoluminescence from self-assembled long-wavelength InAs/GaAs quantum dots was investigated at 15 K under hydrostatic pressure up to 9 GPa. Photoemission from both the ground and the first excited states in large InAs dots was observed. The pressure coefficients of the two emissions were 69 and 72 meV/GPa, respectively. A nonlinear elasticity theory was used to interpret the significantly small pressure coefficients of the large dots. The sequential quenching of the ground and the excited state emissions with increasing pressure suggests that the excited state emissions originate from the optical transitions between the first excited electron states and the first excited hole states. (C) 2004 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

(Ga, Gd, As) film was fabricated by the mass-analyzed dual ion-beam epitaxy system with the energy of 1000 eV at room temperature. There was no new peak found except GaAs substrate peaks (0 0 2) and (0 0 4) by X-ray diffraction. Rocking curves were measured for symmetric (0 0 4) reflections to further yield the lattice mismatch information by employing double-crystal X-ray diffraction. The element distributions vary so much due to the ion dose difference from AES depth profiles. The sample surface morphology indicates oxidizing layer roughness is also relative to the Gd ion dose, which leads to islandlike feature appearing on the high-dose sample. One sample shows ferromagnetic behavior at room temperature. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Suppression of the exciton recombination in GaAs0.7Sb0.3/GaAs/GaAs0.7P0.3 coupled quantum well (CQW) induced by an external magnetic field is investigated theoretically. Unlike the usual electro-Stark effect, the exciton energy dispersion of an exciton is modified by an external in-plane magnetic field, the ground state of the magnetoexciton shifts from a zero in-plane center of mass (CM) momentum to a finite CM momentum, and the Lorentz force induces the spatial separation of electron and hole. Consequently, this effect renders the ground state of magnetoexciton stable against radiative recombination due to momentum conservation. This effect depends sensitively on the thickness and height of GaAs0.7Sb0.3 layer, therefore it could provide us useful infometion about the band alignment of CQW. (C) 2004 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quasi-continuous-wave operation of AlGaAs/GaAs-based quantum cascade lasers (lambda similar to 9 mu m) up to 165 K is reported. The strong temperature dependence of the threshold current density and its higher value in high duty cycle is investigated in detail. The self-heating effect in the active region is explored by changing the operating duty cycles. The degradation of lasing performance with temperature is explained. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Starting from the growth of high-quality 1.3 mu m GaInNAs/GaAs quantum well (QW), the QW emission wavelength has been extended up to 1.55 mu m by a combination of lowering growth rate, using GaNAs barriers and incorporating some amount of Sb. The photoluminescence properties of 1.5 mu m range GaInNAsSb/GaNAs QWs are quite comparable to the 1.3 mu m QWs, revealing positive effect of Sb on improving the optical quality of the QWs. A 1.59 mu m lasing of a GaInNAsSb/GaNAs single-QW laser diode is obtained under continuous current injection at room temperature. The threshold current density is 2.6 kA/cm(2) with as-cleaved facet mirrors. (c) 2005 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel approach for positioning InAs islands on GaAs(110) by cleaved-edge overgrowth is reported. The first growth sample contains a strained InxGa1-xAs/GaAs superlattice of varying indium fraction and thickness, which acts as a strain nanopattern for the cleaved edge overgrowth. The formation of aligned islands is observed by means of atomic force microscopy. The ordering of the aligned islands and the structure of a single InAs island are found to depend on the properties of the underlying InxGa1-xAs/GaAs superlattice and molecular beam epitaxy growth conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time-resolved photoluminescence (PL) of sub-monolayer (SML) InGaAs/GaAs quantum-dot-quantum-well heterostructures was measured at 5 K for the first time. The radiative lifetime of SML quantum dots (QDs) increases from 500 ps to 800 ps with the increase of the size of QDs, which is related to the small confinement energy of the excitons inside SML QDs and the exciton transfer from smaller QDs to larger ones through tunneling. The rise time of quantum-dot state PL signal strongly depends on the excitation power density. At low excitation power density, the rise time is about 35 ps, the mechanism of carrier capture is dominated by the emission of longitudinal-optical phonons. At high excitation power density, the rise time decreases as the excitation density increases, and Auger process plays an important role in the carrier capture. These results are very useful for understanding the working properties of sub-monolayer quantum-dot devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical properties and surface structures of InAs/CaAs self-assembled quantum dots (QDs) grown on 2 nm In-0.2 Ga0.8As and x ML GaAs combined strain-buffer layer were investigated systematically by photoluminescence ( PL) and atomic force microscopy (AFM). The QD density increased from similar to 1.7 x 10(9) cm(-2) to similar to 3.8 x 10(9) cm(-1) due to the decreasing of the lattice mismatch. The combined layer was of benefit to increasing In incorporated into dots and the average height-to-width ratios, which resulted in the red-shift of the emission peaks. For the sample of x = 10 ML, the ground state transition is shifted to 1350 nm at room temperature.