988 resultados para gallium
Resumo:
We have utilized infra-red and optical absorption measurements, grazing incidence X-ray diffraction (GIXRD) and extended X-ray absorption fine structure (EXAFS) measurements to investigate the influence of hydrogenation on the optical and structural properties of GaAs thin films prepared by rf-magnetron sputtering. Hydrogenation induces distinct changes in the optical properties, namely shifts in the absorption edges and reduction of the Urbach energy. Such modifications are correlated to a reduction in structural disorder as determined by EXAFS and the increase of crystallinity determined by GIXRD. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The magneto-optical rotation at room temperature was measured for three Ga:S:La:O chalcogenide glasses at several laser lines in the visible. The first sample was a binary system constituted by 70 mol % Ga2S3 and 30 mol % La2O3, whereas in the second and third ones the lanthanum oxide was partially substituted by lanthanum sulfide, keeping the amount of gallium sulfide fixed. A pulsed magnetic field between 50 and 80 kG was used for the Faraday rotation measurements. The Verdet constant for one of the ternary samples was found to be as high as 0.205 min G(-1) cm(-1) at 543 nm, indicating that these chalcogenide glasses are very promising for magneto-optical applications. The data for each sample were fitted using the expected analytical expression for the magneto-optical dispersion. Measurements of the refractive index of the glasses at 632.8 nm are also reported. Data on the magneto-optical properties of two high Verdet constant, heavy-metal oxide diamagnetic glasses are also included for comparison. (C) 1999 Society of Photo-Optical Instrumentation Engineers. [S0091-3286(99)00102-6].
Resumo:
We study the relationship between the optical gap and the optical-absorption tail breadth for the case of amorphous gallium arsenide (a-GaAs). In particular, we analyze the optical-absorption spectra corresponding to some recently prepared a-GaAs samples. The optical gap and the optical-absorption tail breadth corresponding to each sample is determined. Plotting the optical gap as a function of the corresponding optical-absorption tail breadth, we note that a trend, similar to that found for the cases of the hydrogenated amorphous silicon and hydrogenated amorphous germanium, is also found for the case of a-GaAs. The impact of alloying on the optical-absorption spectrum associated with a-GaAs is also briefly examined. (C) 2004 American Institute of Physics.
Resumo:
Objective: the aim of this study was to evaluate the effectiveness of the clinical use of the gallium-aluminum-arsenium (GaAlAs) laser at the maximum and minimum energies recommended by the manufacturer for the treatment of dentine hypersensitivity.Background Data: Dentine hypersensitivity (DH) is a response to a stimulus that would not usually cause pain in a healthy tooth. It is characterized by sharp pain of short duration from the denuded dentin. Its etiology is unknown. The dentin only begins to show sensitivity when exposed to the buccal environment. This exposure can result after removal of the enamel and/or dental cement, or after root denudation. Different treatments are proposed for this disorder.Materials and Methods: In this study, 25 patients, with a total number of 106 cases of DH, were treated with GaAlAs low-level laser therapy (LLLT). 65% of the teeth were premolars; 14% were incisors and molars; 6.6% were canines. The teeth were irradiated with 3 and 5 J/cm(2) for up to six sessions, with an interval of 72 It between each application, and they were evaluated initially, after each application, and at 15 and 60 days follow-up post-treatment.Results: the treatment was effective in 86.53% and 88.88% of the irradiated teeth, respectively, with the minimum and maximum energy recommended by the manufacturer. There was a statistically significant difference between DH and after a follow-up of 60 days for both groups. The difference among the energy maximum and minimum was not significant.Conclusion: the GaAlAs low-level laser was effective in reducing initial DH. A significant difference was found between initial values of hypersensitivity and after 60 days follow-up post-treatment. No significant difference was found between minimum (3 J/cm(2)) and maximum (5 J/cm(2)) applied energy.
Resumo:
Er3+ -containing gallium-lanthanum oxysulfide glasses have been prepared from Ga2O3 and La2S3 in a sulfur/argon reactive atmosphere. The samples have been characterized by absorption and emission spectroscopy and IR emission kinetics. Er3+ electronic transition intensities have been analyzed in the light of the Judd-Ofelt formalism, and quantum efficiencies evaluated for the Er3+ emission at 1.5 and 2.7 mum. The results so obtained suggest that these glasses display favorable properties concerning IR optical applications. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Gallium-doped zinc oxide (ZnO:Ga 1, 2 3, 4 and 5 at%) samples were prepared in powder form by modifying the Pechini method. The formation of zinc gallate (ZnGa2O4) With the spinel crystal structure was observed even in ZnO:Ga 1 at% by X-ray diffraction. The presence of ZnGa2O4 in ZnO:Ga samples was also evidenced by luminescence spectroscopy through its blue emission at 430 nm, assigned to charge transfer between Ga3+ at regular octahedral symmetry and its surrounding O2- ions. The amount of ZnGa2O4 increases as the dopant concentration increases, as observed by the quantitative phase analysis by the Rietveld method. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
Oxysulphide glasses have been prepared in the pseudo binary system GeS(2.6)-Ga(2)O(3). The effect of addition of gallium oxide has been evaluated in term of thermal and optical properties. Structural behavior has been studied using Raman spectroscopy. Samples have been exposed above band gap energy (3.52 eV) varying power density and exposure time. Giant photoexpansion and photorefraction is obtained for samples containing 20% of Ga(2)O(3). (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we describe the preparation of glass ceramics in the Ga2S3 - GeS2 - CsCl system Visible and infrared transmitting glass ceramics were reproducibly obtained by appropriated heat treatment of the base glass Crystals with controllable size of about 40 nm were homogeneously generated in the glassy matrix X-ray diffraction characterizations have shown that gallium acts as nucleating agent in this material, giving rise to alpha-Ga2S3 crystals Improved thermo-mechanical properties such as dilatation coefficient and resistance to fracture propagation have been observed in the prepared glass ceramics
Resumo:
ZnO has received great attention in many applications due to its electronic and optical properties. We report on the preparation of ZnO and gallium-containing ZnO (ZnO:Ga) nanoparticles by the precipitation method. The nanoparticles have the wurtzite structure and a high crystallinity. Gallium ions are present as Ga(3+), as evidenced by the binding energies through XPS. Porosity and surface area of the powder increased under increasing gallium level, explained by the smaller particle size of ZnO:Ga samples compared with ZnO. The estimated optical band gap of ZnO was 3.2 eV, comparable to ZnO:Ga.
Resumo:
To study the influence of Ga addition on photoinduced effect, GaGeS glasses with constant atomic ratio S/Ge = 2.6 have been prepared. Using Raman spectroscopy, we have reported the effect of Ga on the structural behavior of these glasses. An increase of the glass transition temperature T(g), the linear refractive index and the density have been observed with increasing gallium content. The photoinduced phenomena have been examined through the influence of time exposure and power density, when exposed to above light bandgap (3.53 eV). The correlation between photoinduced phenomena and Ga content in such glasses are shown hereby. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The design of a Gilbert Cell Mixer and a low noise amplifier (LNA), using GaAs PHEMT technology is presented. The compatibility is shown for co-integration of both block on the same chip, to form a high performance 1.9 GHz receiver front-end. The designed LNA shows 9.23 dB gain and 2.01 dB noise figure (NF). The mixer is designed to operate at RF=1.9 GHz, LO=2.0 GHz and IF=100 MHz with a gain of 14.3 dB and single sideband noise figure (SSB NF) of 9.6 dB. The mixer presents a bandwith of 8 GHz.
Resumo:
This work reports changes in structural properties produced by thermal annealing of flash evaporated amorphous GaAs films using the micro-Raman scattering and the X-ray diffraction (XRD) techniques. Films of about 1 μm were grown on c-Si and glass substrates. The crystallization process is less effective for samples deposited on c-Si. This could be due to the ordering in the first layers of the film imposed by the oriented Si substrates. We propose that this ordering makes the growth of crystallites in these films more restrained than the growth occurring in the completely amorphous films on glass substrates. © 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Objective: The aim of this study was to evaluate the effectiveness of the clinical use of the gallium-aluminum-arsenium (GaAlAs) laser at the maximum and minimum energies recommended by the manufacturer for the treatment of dentine hypersensitivity. Background Data: Dentine hypersensitivity (DH) is a response to a stimulus that would not usually cause pain in a healthy tooth. It is characterized by sharp pain of short duration from the denuded dentin. Its etiology is unknown. The dentin only begins to show sensitivity when exposed to the buccal environment. This exposure can result after removal of the enamel and/or dental cement, or after root denudation. Different treatments are proposed for this disorder. Materials and Methods: In this study, 25 patients, with a total number of 106 cases of DH, were treated with GaAlAs low-level laser therapy (LLLT). 65% of the teeth were premolars; 14% were incisors and molars; 6.6% were canines. The teeth were irradiated with 3 and 5 J/cm 2 for up to six sessions, with an interval of 72 h between each application, and they were evaluated initially, after each application, and at 15 and 60 days follow-up post-treatment. Results: The treatment was effective in 86.53% and 88.88% of the irradiated teeth, respectively, with the minimum and maximum energy recommended by the manufacturer. There was a statistically significant difference between DH and after a follow-up of 60 days for both groups. The difference among the energy maximum and minimum was not significant. Conclusion: The GaAlAs low-level laser was effective in reducing initial DH. A significant difference was found between initial values of hypersensitivity and after 60 days follow-up post-treatment. No significant difference was found between minimum (3 J/cm 2) and maximum (5 J/cm 2) applied energy.
Resumo:
Ferromagnetic clusters were incorporated into GaAs samples by Mn implantation and subsequent annealing. The composition and structural properties of the Mn-based nanoclusters formed at the surface and buried into the GaAs sample were analyzed by x-ray and microscopic techniques. Our measurements indicate the presence of buried MnAs nanoclusters with a structural phase transition around 40 °C, in accord with the first-order magneto-structural phase transition of bulk MnAs. We discuss the structural behavior of these nanoclusters during their formation and phase transition, which is an important point for technological applications. © 2005 American Institute of Physics.