978 resultados para deposition temperature
Resumo:
Quality ZnO films were successfully grown on Si(100) substrate by low-pressure metal organic chemical vapor deposition method in temperature range of 300-500 degrees C using DEZn and N2O as precursor and oxygen source respectively. The crystal structure, optical properties and surface morphology of ZnO films were characterized by X-ray diffraction, optical refection and atomic force microscopy technologies. It was demonstrated that the crystalline structure and surface morphology of ZnO films strongly depend on the growth temperature.
Resumo:
Post-growth annealing was carried out on ZnO thin films grown by metal-organic chemical vapor deposition (MOCVD). The grain size of ZnO thin film increases monotonically with annealing temperature. The ZnO thin films were preferential to c-axis oriented after annealing as confirmed by Xray diffraction (XRD) measurements. Fourier transformation infrared transmission measurements showed that ZnO films grown at low temperature contains CO2 molecules after post-growth annealing. A two-step reaction process has been proposed to explain the formation mechanism of CO2, which indicates the possible chemical reaction processes during the metal-organic chemical vapor deposition of ZnO films.
Resumo:
Numerical analysis was used to study the deposition and burning characteristics of combining co-combustion with slagging combustion technologies in this paper. The pyrolysis and burning kinetic models of different fuels were implanted into the WBSF-PCC2 (wall burning and slag flow in pulverized co-combustion) computation code, and then the slagging and co-combustion characteristicsespecially the wall burning mechanism of different solid fuels and their effects on the whole burning behavior in the cylindrical combustor at different mixing ratios under the condition of keeping the heat input samewere simulated numerically. The results showed that adding wood powder at 25% mass fraction can increase the temperature at the initial stage of combustion, which is helpful to utilize the front space of the combustor. Adding wood powder at a 25% mass fraction can increase the reaction rate at the initial combustion stage; also, the coal ignitability is improved, and the burnout efficiency is enhanced by about 5% of suspension and deposition particles, which is helpful for coal particles to burn entirely and for combustion devices to minimize their dimensions or sizes. The results also showed that adding wood powder at a proper ratio is helpful to keep the combustion stability, not only because of the enhancement for the burning characteristics, but also because the running slag layer structure can be changed more continuously, which is very important for avoiding the abnormal slag accumulation in the slagging combustor. The theoretic analysis in this paper proves that unification of co-combustion and slagging combustion technologies is feasible, though more comprehensive and rigorous research is needed.
Resumo:
ZnO, as a wide-band gap semiconductor, has recently become a new research focus in the field of ultraviolet optoelectronic semiconductors. Laser molecular beam epitaxy (L-MBE) is quite useful for the unit cell layer-by-layer epitaxial growth of zinc oxide thin films from the sintered ceramic target. The ZnO ceramic target with high purity was ablated by KrF laser pulses in an ultra high vacuum to deposit ZnO thin film during the process of L-MBE. It is found that the deposition rate of ZnO thin film by L-MBE is much lower than that by conventional pulsed laser deposition (PLD). Based on the experimental phenomena in the ZnO thin film growth process and the thermal-controlling mechanism of the nanosecond (ns) pulsed laser ablation of ZnO ceramic target, the suggested effective ablating time during the pulse duration can explain the very low deposition rate of the ZnO film by L-MBE. The unique dynamic mechanism for growing ZnO thin film is analyzed. Both the high energy of the deposition species and the low growth rate of the film are really beneficial for the L-MBE growth of the ZnO thin film with high crystallinity at low temperature.
Resumo:
We report our recent progress of investigations on InGaN-based blue-violet laser diodes (LDs). The room-temperature (RT) cw operation lifetime of LDs has extended to longer than 15.6 h. The LD structure was grown on a c-plane free-standing (FS) GaN substrate by metal organic chemical vapor deposition (MOCVD). The typical threshold current and voltage of LD under RT cw operation are 78 mA and 6.8 V, respectively. The experimental analysis of degradation of LD performances suggests that after aging treatment, the increase of series resistance and threshold current can be mainly attributed to the deterioration of p-type ohmic contact and the decrease of internal quantum efficiency of multiple quantum well (MQW), respectively.
Resumo:
Up to now, in most of the research work done on the effect of hydrogen on a Schottky barrier, the hydrogen was introduced into the semiconductor before metal deposition. This letter reports that hydrogen can be effectively introduced into the Schottky barriers (SBs) of Au/n-GaAs and Ti/n-GaAs by plasma hydrogen treatment (PHT) after metal deposition on [100] oriented n-GaAs substrates. The Schottky barrier height (SBH) of a SB containing hydrogen shows the zero/reverse bias annealing (ZBA/RBA) effect. ZBA makes the SBH decrease and RBA makes it increase. The variations in the SBHs are reversible. In order to obtain obvious ZBA/RBA effects, selection of the temperature for plasma hydrogen treatment is important, and it is indicated that 100-degrees-C for Au/n-GaAs and 150-degrees-C for Ti/n-GaAs are suitable temperatures. It is concluded from the analysis of experimental results that only the hydrogen located at or near the metal-semiconductor interface, rather than the hydrogen in the bulk of either the semiconductor or the metal, is responsible for the ZBA/RBA effect on SBH.
Resumo:
A high-energy shift of the band-band recombination has been observed in photoluminescence spectra of the strained InP layer grown on GaAs substrate. The InP layer is under biaxial compressive strain at temperatures below the growth temperature, because the thermal expansion coefficient of InP is smaller than that of GaAs. The strain value determined by the energy shift of the band-edge peak is in good agreement with the calculated thermal strain. A band to carbon acceptor recombination is also identified.
Resumo:
The influence of deposition, annealing conditions, and etchants on the wet etch rate of plasma enhanced chemical vapor deposition (PECVD) silicon nitride thin film is studied. The deposition source gas flow rate and annealing temperature were varied to decrease the etch rate of SiN_x:H by HF solution. A low etch rate was achieved by increasing the SiH_4 gas flow rate or annealing temperature, or decreasing the NH_3 and N_2 gas flow rate. Concen-trated, buffered, and dilute hydrofluoric acid were utilized as etchants for SiO_2 and SiN_x:H. A high etching selectivity of SiO_2 over SiN_x:H was obtained using highly concentrated buffered HF.
Resumo:
The temperature is a key factor for the quality of the SiGe alloy grown by D-UHV/CVD. In conventional conditions,the lowest temperature for SiGe growth is about 550℃. Generally, the pressure of the growth chamber is about 10~(-5) Pa when liquid nitrogen is introduced into the wall of the growth chamber with the flux of 6sccm of the disilane gas. We have succeeded in depositing SiGe films at much lower temperature using a novel method. It is about 10.2 Pa without liquid nitrogen, about 3 magnitudes higher than the traditional method,leading to much faster deposition rate. Without liquid nitrogen,the SiGe film and SiGe/Si superlattice are grown at 485℃. The DCXRD curves and TEM image show that the quality of the film is good. The experiments show that this method is efficient to deposit SiGe at low temperature.
Resumo:
ZnO films were deposited on Si(100) substrates at 300℃ by metal - organic chemical vapor deposition(MOCVD). The effect of different ratios of DEZn to N2O on crystal quality was analyzed. It is found that the optimum ratio of DEZn to N2O is 2.1. And in this optimum growth condition, X - ray diffraction (XRD) and scanning probe morphology (SPM) images indicate that the films grow along the c - axis orientation. ZnO film exhibits a strong UV optical absorption near 388 nm. And the optical absorbance is close to zero,that indicates nearly 100% optical transparence. Photoluminescence (PL) spectrum shows only strong near - band - edge emissions with little or no deep - level emission related to defects. The full - width at half - maximum (FWHM) of the ultraviolet emission peak is 80meV. The results indicate that better crystal quality can be obtained.
Resumo:
Horizontal air-cooled low-pressure hot-wall CVD (LP-HWCVD) system is developed to get highly qualitical 4H-SiC epilayers.Homoepitaxial growth of 4H-SiC on off-oriented Si-face (0001) 4H-SiC substrates is performed at 1500℃ with a pressure of 1.3×103Pa by using the step-controlled epitaxy.The growth rate is controlled to be about 1.0μm/h.The surface morphologies and structural and optical properties of 4H-SiC epilayers are characterized with Nomarski optical microscope,atomic force microscopy (AFM),X-ray diffraction,Raman scattering,and low temperature photoluminescence (LTPL).N-type 4H-SiC epilayers are obtained by in-situ doping of NH3 with the flow rate ranging from 0.1 to 3sccm.SiC p-n junctions are obtained on these epitaxial layers and their electrical and optical characteristics are presented.The obtained p-n junction diodes can be operated at the temperature up to 400℃,which provides a potential for high-temperature applications.
Resumo:
The high temperature (300~480K) characteristics of the n-3C-SiC/p-Si heterojunction diodes (HJD) fabricated by low-pressure chemical vapor deposition on Si (100) substrates are investigated.The obtained diode with best rectifying properties has 1.8×104 of ratio at room temperature,and slightly rectifying characteristics with 3.1 of rectification ratio is measured at 480K of an ambient temperature .220V of reverse breakdown voltage is acquired at 300K.Capacitance-voltage characteristics show that the abrupt junction model is applicable to the SiC/Si HJD structure and the built-in voltage is 0.75V.An ingenious equation is employed to perfectly simulate and explain the forward current density-voltage data measured at various temperatures.The 3C-SiC/Si HJD represents a promising approach for the fabrication of high quality heterojunction devices such as SiC-emitter heterojunction bipolar transistors.
Resumo:
High quality cubic GaN (c-GaN) is grown by metalorganic vapor deposition (MOCVD) at an increased growth temperature of 900 ℃, with the growth rate of 1.6 μm/h. The full width at half maximum (FWHM) of room temperature photoluminescence (PL) for the high temperature grown GaN film is 48meV. It is smaller than that of the sample grown at 830 ℃. In X-ray diffraction (XRD) measurement, the high temperature grown GaN shows a (002) peak at 20° with a FWHM of 21'. It can be concluded that, although c-GaN is of metastable phase, high growth temperature is still beneficial to the improvement in its crystal quality. The relationship between the growth rate and growth temperature is also discussed.
Resumo:
GaNAs alloy is grown by metalorganic chemical vapor deposition (MOCVD) using dimethylhydrazine (DMHy) as the nitrogen precursor. High-resolution X-ray diffraction (HRXRD) and secondary ion mass spectrometry (SIMS) are combined in determining the nitrogen contents in the samples. Room temperature photoluminescence (RTPL) measurement is also used in characterizing. The influence of different Ga precursors on GaNAs quality is investigated. Samples grown with triethylgallium (TEGa) have better qualities and less impurity contamination than those with trimethylgallium (TMGa). Nitrogen content of 5.688% is achieved with TEGa. The peak wavelength in RTPL measurement is measured to be 1278.5nm.
Resumo:
Low threshold current and high temperature operation of 650nm AlGaInP quantum well laser diodes grown by low pressure metal organic chemical vapor deposition (LP-MOCVD) are reported in this paper. 650nm laser diodes with threshold current as low as 22-24mA at room temperature, and the operating temperature over 90 degrees C at CW output power 5 mW were achieved in this study. These lasers are stable during 72 hours burn in under 5mW at 90 degrees C.