944 resultados para OPTICAL CRYSTAL


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper. we investigate the influences of the initial nitridation of sapphire substrates on the optical and structural characterizations in GaN films. Two GaN samples with and without 3 min nitridation process were investigated by photoluminescence (PL) spectroscopy in the temperature range of 12-300 K and double-crystal X-ray diffraction (XRD). In the 12 K PL spectra of the GaN sample without nitridation, four dominant peaks at 3.476, 3.409 3.362 and 3.308 eV were observed, which were assigned to donor bound exciton, excitons bound to stacking faults and extended structural defects. In the sample with nitridation, three peaks at 3.453, 3.365. and 3.308 eV were observed at 12 K, no peak related to stacking faults. XRD results at different reflections showed that there are more stacking faults in the samples without nitridation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated transitions above and below band edge of GaNAs/GaAs and InGaNAs/GaAs single quantum wells (QWs) by photoluminescence (PL) as well as by absorption spectra via photovoltaic effects. The interband PL peak is observed to be dominant under high excitation intensity and at low temperature. The broad luminescence band below band edge due to the nitrogen-related potential fluctuations can be effectively suppressed by increasing indium incorporation into InGaNAs. In contrast to InGaNAs/GaAs QWs, the measured interband transition energy of GaNAs/GaAs QWs can be well fitted to the theoretical calculations if a type-II band lineup is assumed. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have fabricated a new self-assembled quantum dot system where InGaAs dots are formed on InAlAs wetting layer and embedded in GaAs matrix. The low-temperature photoluminescence and atomic force microscopy measurements confirm the realization of the structure. In contrast to traditional InAs/Ga(Al)As quantum dots, the temperature dependence of the photoluminescence of the dots in such a structure exhibits an electronically decoupled feature due to a higher energy level of the wetting layer which keeps the dots more isolated from each other. (C) 2001 Published by Elsevier Science B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

InAs and InxGa1-xAs (x = 0.2 and 0.5) self-organized quantum dots (QDs) were fabricated on GaAs(0 0 1) by molecular beam epitaxy (MBE) and characterized by atomic force microscopy (AFM), transmission electron microscopy (TEM), acid photoluminescence polarization spectrum (PLP). Both structural and optical properties of InxGa1-xAs QD layer are apparently different from those of InAs QD layer. AFM shows that InxGa1-xAs QDs tend to be aligned along the [1 (1) over bar 0] direction, while InAs QDs are distributed randomly. TEM demonstrates that there is strain modulation along [1 1 0] in the InxGa1-xAs QD layers. PLP shows that In0.5Ga0.5As islands present optical anisotropy along [1 1 0] and [1 (1) over bar 0] due to structural and strain field anisotropy for the islands. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optical transient current spectroscopy (OTCS) has been used to investigate defects in the low-temperature-grown GaAs after postgrowth rapid thermal annealing (RTA). Two samples A and B were grown at 220 degreesC and 360 degreesC on (001) GaAs substrates, respectively. After growth, samples were subjected to 30s RTA in the range of 500-800 degreesC. Before annealing, X-ray diffraction measurements show that the concentrations of the excess arsenic for samples A and B are 2.5 x 10(19) and 1 x 10(19) cm(-3), respectively. It is found that there are strong negative decay signals in the optical transient current (OTC) for the annealed sample A. Due to the influence of OTC strong negative decay signals, it is impossible to identify deep levels clearly from OTCS. For a comparison, three deep levels can be identified for sample B before annealing. They are two shallower deep levels and the so-called As-Ga antisite defect. At the annealing temperature of 600 degreesC, there are still three deep levels. However, their structures are different from those in the as-grown sample. OTC strong negative decay signals are also observed for the annealed sample B. It is argued that OTC negative decay signals are related to arsenic clusters. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deep levels in undoped GaN materials grown by modified molecular beam epitaxy (MBE) are investigated by photoluminescence (PL) and optical quenching of photoconductivity measurements. A broad band which extends from 2.1 to 3.0 eV with a maximum at about 2.7 eV is observed, and four prominent quenching bands were found located at 2.18, 2.40, 2.71, and 2.78 eV above the valence band, respectively. These levels are attributed to four holes trap levels existence in the material. The defects cannot be firmly identified at present. (C) 2000 Elsevier Science B.V, All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An X-ray diffraction method, estimating the strain relaxation in an ultrathin layer, has been discussed by using kinematic and dynamical X-ray diffraction (XRD) theory. The characteristic parameter Delta Omega, used as the criterion of the strain relaxation in ultrathin layers, is deduced theoretically. It reveals that Delta Omega should be independent of the layer thickness in a coherently strained layer. By this method, we characterized our ultrathin GaNxAs1-x samples with N contents up to 5%. XRD measurements show that our GaNxAs1-x layers are coherently strained on GaAs even for such a large amount of N. Furthermore, a series of GaNxAs1-x samples with same N contents but different layer thicknesses were also characterized. It was found that the critical thickness (L-c) of GaNAs in the GaAs/GaNAs/GaAs structures determined by XRD measurement was 10 times smaller than the theoretical predictions based on the Matthews and Blakeslee model. This result was also confirmed by in situ observation of reflection high-energy electron diffraction (RHEED) and photoluminescence (PL) measurements. RHEED observation showed that the growth mode of GaNAs layer changed from 2D- to 3D-mode as the layer thickness exceeded L-c. PL measurements showed that the optical properties of GaNAs layers deteriorated rapidly as the layer thickness exceeded L-c. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the temperature and excitation power dependence of photoluminescence properties of InAs self-assembled quantum dots grown between two Al0.5Ga0.5As quantum wells. The temperature evolutions of the lower-and higher-energy transition in the photoluminescence spectra have been observed. The striking result is that a higher-energy peak appears at 105 K and its relative intensity increases with temperature in the 105-291 K range. We demonstrate that the higher-energy peak corresponds to the excited-state transition involving the bound-electron state of quantum dots and the two-dimensional hole continuum of wetting layer. At higher temperature, the carrier transition associated with the wetting layer dominates the photoluminescence spectra. A thermalization model is given to explain the process of hole thermal transfer between wetting layer and quantum dots. (C) 2000 Published by Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we report the optical and microscopic properties of self-organized InAs/GaAs quantum dots grown by molecular beam epitaxy on (1 0 0) oriented GaAs substrates. A distinctive double-peak feature of the PL spectra from quantum dots has been observed, and a bimodal distribution of dot sizes has also been confirmed by scanning tunneling microscopy (STM) image for uncapped sample. The power-dependent photoluminescence (PL) study demonstrates that the distinctive PL emission peaks are associated with the ground-state emission of islands in different size branches. The temperature-dependent PL study shows that the PL quenching temperature for different dot families is different. It is shown that the coupling between quantum dots plays a key role in unusual temperature dependence of QD photoluminescence. In addition, we have tuned the emission wavelength of InAs QDs to 1.3 mu m at room temperature. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self-ordering of quasi-quantum wires in multilayer InAlAs/AlGaAs nanostructures grown by molecular beam epitaxy is identified. The chain-like structures along the [1 (1) over bar 0] Of direction formed by coalescence of quantum dots were observed. The photoluminescence of the nanostructures is partially polarized along the [1 (1) over bar 0] direction. The polarization ratio depends on the wavelength and the maximum polarization is on the lower energy side. The maximum polarization increases from 0.32 at 10 K to 0.53 at 100 K, and the energy position of maximum polarization moves near to PL peak with increasing temperature. They are all related to the existence of isolated islands and quasi-quantum wires in our sample. This result provides a novel approach to produce narrow quantum wires. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the Green function method, we have studied the cyclotron resonance of an electron interacting with bulk longitudinal optical(BO) phonons as well as surface optical(SO) phonons in a polar crystal slab at finite temperatures. It is found that the temperature dependence of magnetopolaron depends strongly on the strength of the magnetic field. The numerical results show that the cyclotron resonance mass of polaron in a slab is an increasing or decreasing function of temperature when the magnetic field is lower or higher than the resonant magnetic field region, respectively. The magnetic field and slab width dependence of cyclotron resonance mass are also studied in this paper. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cubic GaN was grown on GaAs(100) by low pressure metal organic chemical vapor deposition (MOCVD). X-ray diffraction, scanning electron microscope (SEM) and photoluminescence (PL) spectra were performed to characterize the quality of the GaN film. The PL spectra of cubic GaN thin films being thicker than 1.5 mu m were reported. Triple-crystal diffraction to analyze orientation distributions and strain of the thin films was also demonstrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural and optical investigations of InAs QDs grown on GaAs (3 1 1)A by molecular beam epitaxy (MBE) were reported. InAs/GaAs (3 1 1)A QDs with nonconventional, faceted, arrowhead-like shapes aligned in the [ - 2 3 3] direction have been disclosed by AFM image. Low defect and dislocation density on the QDs interfaces were indicated by the linear dependence of photoluminescence (PL) intensity on the excitation power. The fast red shift of PL energy and the monotonic decrease of FWHM with increasing temperature were observed and explained by carriers being thermally activated to the energy barrier produced by the wetting layer and then retrapped and recombined in energetically low-lying QDs states. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structural and optical properties of InAs layers grown on high-index InP surfaces by molecular beam epitaxy are investigated in order to understand the self-organization of quantum dots and quantum wires on novel index surfaces. Four different InP substrate orientations have been examined, namely, (1 1 1)B, (3 1 1)A, and (3 1 1)B and (1 0 0). A rich variety of InAs nanostructures is formed on the surfaces. Quantum wire-like morphology is observed on the (1 0 0) surface, and evident island formation is found on (1 1 1)A and (3 1 1)B by atomic force microscopy. The photoluminescence spectra of InP (1 1 1)A and (3 1 1)B samples show typical QD features with PL peaks in the wavelength range 1.3-1.55 mu m with comparable efficiency. These results suggest that the high-index substrates are promising candidates for production of high-quality self-organized QD materials for device applications. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electronic structure of crystalline Y2O3 is investigated by first-principles calculations within the local-density approximation (LDA) of the density-functional theory. Results are presented for the band structure, the total density of states (DOS), the atom-and orbital-resolved partial DOS. effective charges, bond order, and charge-density distributions. Partial covalent character in the Y-O bonding is shown, and the nonequivalency of the two Y sites is demonstrated. The calculated electronic structure is compared with a variety of available experimental data. The total energy of the crystal is calculated as a function of crystal volume. A bulk modulus B of 183 Gpa and a pressure coefficient B' of 4.01 are obtained, which are in good agreement with compression data. An LDA band gap of 4.54 eV at Gamma is obtained which increases with pressure at a rate of dE(g)/dP = 0.012 eV/Gpa at the equilibrium volume. Also investigated are the optical properties of Y2O3 up to a photon energy of 20 eV. The calculated complex dielectric function and electron-energy-loss function are in good agreement with experimental data. A static dielectric constant of epsilon(O)= 3.20 is obtained. It is also found that the bottom of the conduction band consists of a single band, and direct optical transition at Gamma between the top of the valence band and the bottom of the conduction band may be symmetry forbidden.