675 resultados para Chapa de partícula aglomerada


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite the relatively organized cashew (Anacardium occidentale L.) productive chain and the number of cashew derivatives found in the market, it is estimated that over 90% of the cashew peduncle is wasted. A possible strategy for a better commercial exploitation of this agroindustrial commodity would be the production of spray dried cashew pulp. Thus, this paper approaches the yellow cashew pulp spray drying process and the final product evaluation. Based on that, the shelf life of the spray dried cashew pulp packed in different packaging was evaluated. Drying was conducted in two drying temperatures (140 °C to 150 °C) and two concentrations of Arabic gum (AG, 15% and 25%), which summed four experimental groups. The drying performance was evaluated as well as the physicochemical characteristics (moisture, water activity, total soluble solids, pH, density, solubility, particle diameter, hygroscopicity, degree of caking, color, scanning electronic microscopy and X-ray diffraction), composition (protein, ash, fat and sugars) and bioactive and functional value (total phenolic compounds, carotenoids, ascorbic acid and antioxidant activity) of the final products. Results showed spray drying efficiency higher than 65% for all experiments, mainly for the C4 group (150 °C and 25% AG) which reached efficiency of 93.4%. It was also observed high solubility (94.7% to 97.9%) and the groups with lower hygroscopicity (5.8% and 6.5%) were those with the highest proportion of drying coadjuvant. The particle diameters ranged between 14.7 μm and 30.2 μm and increased with the proportion of AG. When comparing the product before and after spray drying, the drying impact was evident. However, despite the observed losses, dried yellow cashew showed high phenolic concentration (from 235.9 to 380.4 mg GAE eq / 100 g DM), carotenoids between 0.22 and 0.49 mg/100 g DM and remarkable ascorbic acid levels (852.4 to 1346.2 mg/100 g DM), in addition to antioxidant activity ranging from 12.9 to 16.4 μmol TE/ g DM. The shelf life study revealed decreased phenolic content over time associated to a slight water activity increase. Overall, our results unveil the technological and bioactive potential of dried yellow cashew as a functional ingredient to be used in food formulations or as a ready-to-use product. The technological approach presented here can serve as an efficient strategy for a rational use of the cashew apple, avoiding its current underutilization

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A padronização de um fitoterápico é etapa imprescindível para garantia da qualidade de medicamentos contendo plantas medicinais. Objetivou-se padronizar Syzygiam cumini (L.) Skeels e para tanto se estabeleceram parametros tais como, avaliação morfoanatômica das folhas, morfológica das flores e dos frutos, avaliação granulométrica da droga rasurada (frutos), determinação da umidade, avaliação dos processos de secagem, determinação do teor de extrativos e do teor de taninos (monômeros e polimeros). O estudo anatômico das folhas revelou a inexistência de pêlos no sistema dérmico, assim como a ocorrência de glândulas secretoras, drusas, colênquima e esclerênquima. As flores são hermafroditas, com androceu polistêmone e gineceu com ovário ínfero, gamocarpelar, bilocular com placentação axial. Observou-se elevado teor extrativo (38,57%). O diâmetro médio de partícula dos frutos secos moídos ficou em 0,630 mm. O processo de secagem dos frutos influenciou o teor de taninos totais. O teor de taninos determinado ficou em 5,10% para monômeros e 11,30% para os polimeros.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of finite size on the magnetic properties of ferromagnetic particles systems is a recurrent subject. One of the aspects wide investigated is the superparamagnetic limit where the temperature destroys the magnetic order of ferromagnetic small particles. Above the block temperature the thermal value of the magnetic moment of the particle vanishes, due to thermal fluctuations. The value of the blocking temperature diminishes when the size of the particle is reduced, reflecting the reduction of the anisotropy energy barrier between the uniform states along the uniaxial axis. The increasing demand for high density magnetic media has recently attracted great research interest in periodic arrangements of nanometric ferromagnetics particles, approach in the superparamagnetic limit. An interesting conjecture is the possibility of stabilization of the magnetic order of small ferromagnetic particles (F) by interface coupling with antiferromagnetic (AF) substrate. These F/AF systems may also help to elucidate some details of the effect of exchange bias, because the effect of interface roughness and the paper of domain walls, either in the substrate or the particle, are significantly reduced. We investigate the magnetic phases of small ferromagnetic particles on a antiferromagnetic substrate. We use a self-consistent local field method, incorporating the interface field and the dipole interaction between the spins of the ferromagnetic particle. Our results indicate that increasing the area of the interface favors the formation of the uniform state. Howere above a critical height value appears a state non-uniform is formed where the spins of in the particle s free surface are rotated with respect to the interface spins direction. We discuss the impact of the competition between the dipolar and interface field on the magnetic charge, that controls the field of flux leakage of the particle, and on the format of the hysteresis curves. Our results indicate that the liquid magnetic charge is not a monotonically increasing function of the height of the particle. The exchange bias may display anomalous features, induced for the dipolar field of the spins near the F/AF interface

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the critical behavior of the one-dimensional pair contact process (PCP), using the Monte Carlo method for several lattice sizes and three different updating: random, sequential and parallel. We also added a small modification to the model, called Monte Carlo com Ressucitamento" (MCR), which consists of resuscitating one particle when the order parameter goes to zero. This was done because it is difficult to accurately determine the critical point of the model, since the order parameter(particle pair density) rapidly goes to zero using the traditional approach. With the MCR, the order parameter becomes null in a softer way, allowing us to use finite-size scaling to determine the critical point and the critical exponents β, ν and z. Our results are consistent with the ones already found in literature for this model, showing that not only the process of resuscitating one particle does not change the critical behavior of the system, it also makes it easier to determine the critical point and critical exponents of the model. This extension to the Monte Carlo method has already been used in other contact process models, leading us to believe its usefulness to study several others non-equilibrium models

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we investigate the stochastic behavior of a large class of systems with variable damping which are described by a time-dependent Lagrangian. Our stochastic approach is based on the Langevin treatment describing the motion of a classical Brownian particle of mass m. Two situations of physical interest are considered. In the first one, we discuss in detail an application of the standard Langevin treatment (white noise) for the variable damping system. In the second one, a more general viewpoint is adopted by assuming a given expression to the so-called collored noise. For both cases, the basic diffententiaql equations are analytically solved and al the quantities physically relevant are explicitly determined. The results depend on an arbitrary q parameter measuring how the behavior of the system departs from the standard brownian particle with constant viscosity. Several types of sthocastic behavior (superdiffusive and subdiffusive) are obteinded when the free pamameter varies continuosly. However, all the results of the conventional Langevin approach with constant damping are recovered in the limit q = 1

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we investigate the effect of a BCS-type pairing term for free spinless fermions, with a propensity to form a condensate of pairs in a 1+1 dimension. Using the of bosonization technique we explore the possible condition of existence of quasiparticles in a superconducting state. Although there is no spontaneous breaking of chiral symmetry the propagator of one-particle fermion is massive and, in fact, resembles the one-particle Green s function of conventional quasiparticles

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this work is to derive theWard Identity for the low energy effective theory of a fermionic system in the presence of a hyperbolic Fermi surface coupled with a U(1) gauge field in 2+1 dimensions. These identities are important because they establish requirements for the theory to be gauge invariant. We will see that the identity associated Ward Identity (WI) of the model is not preserved at 1-loop order. This feature signalizes the presence of a quantum anomaly. In other words, a classical symmetry is broken dynamically by quantum fluctuations. Furthermore, we are considering that the system is close to a Quantum Phase Transitions and in vicinity of a Quantum Critical Point the fermionic excitations near the Fermi surface, decay through a Landau damping mechanism. All this ingredients need to be take explicitly to account and this leads us to calculate the vertex corrections as well as self energies effects, which in this way lead to one particle propagators which have a non-trivial frequency dependence

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este estudo teve o objetivo de avaliar o comportamento de treze tipos de meios filtrantes primários desenvolvidos para uso na filtração a vácuo de lodo de caldo de cana, simulando as operações de formação e desidratação da torta em filtros contínuos de tambor rotativo a vácuo, empregados nas indústrias de açúcar e álcool do Brasil. Para tanto, foi desenvolvida uma planta-piloto anexa ao filtro de tambor rotativo a vácuo, na qual foram realizados todos os ensaios, com o objetivo de refletir a realidade das variáveis operacionais durante uma safra sucroalcooleira. Os resultados são apresentados, comparando-se as taxas de filtração, variando a pressão de formação da torta, temperatura e concentração de auxiliar filtrante, mostrando ao usuário um novo caminho para o melhoramento quantitativo e qualitativo, sem aumentar a área nominal da unidade de filtração.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chitosan nanoparticles have been used in several systems for the controlled release of drugs. The aim of this study was to obtain and characterize chitosan nanoparticles prepared by the method of coacervation / precipitation using sodium sulfate at different concentrations as the crosslinking agent. The characterization was done using zeta potential and small angle Xray scattering, SAXS. The dispersions of chitosan were obtained at pH 1 and pH = 3. The results of zeta potential at pH = 1 ranged from +64.8 to +29.27 mV and for pH = 3 they varied from +72.4 to +23.48 mV, indicating that the chain of chitosan is positively charged in acidic pH and the behavior of nanoparticles in terms of surface charge was independent of pH. However, the results indicated a dependence of particle size in relation to pH. This difference in behavior was explained by the influence of enthalpic and entropic components

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Materials consisting of perovskite-type oxides (ABO3) have been developed in this work for applications in fuel cell cathodes of solid oxide type (SOFC). These ceramic materials are widely studied for this type of application because they have excellent electrical properties, conductivity and electrocatalytic. The oxides LaMnO3, LaFeO3, LaFe0.2Mn0.8O3 e La0.5Fe0.5MnO3 were synthesized by the method of microwave assisted combustion and after sintering at 800°C in order to obtain the desired phases. The powders were characterized by thermogravimetry (TG), X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM) and voltammetric analysis (cyclic voltammetry and polarization curves). The results obtained by XRF technique showed that the microwave synthesis method was effective in obtaining doping oxides with values near stoichiometric. In general, powders were obtained with particle size less than 0.5 μm, having a porous structure and uniform particle size distribution. The particles showed spherical form, irregular and crowded of varying sizes, according to the analysis of SEM. The behavior of the oxides opposite the thermal stability was monitored by thermogravimetric curves (TG), which showed low weight loss values for all samples, especially those of manganese had its structure. By means of Xray diffraction of the samples sintered at 800°C was possible to observe the formation of powders having high levels of crystallinity. Furthermore, undesirable phases such as La2O3 and MnOx were not identified in the diffractograms. These phases block the transport of oxygen ions in the electrode/electrolyte interface, affecting the electrochemical activity of the system. The voltammetric analysis of the electrocatalysts LF-800, LM-800, LF2M8-800 e L5F5M-800 revealed that these materials are excellent electrical conductors, because it increased the passage of electrical current of the working electrode significantly. Best performance for the oxygen reduction reaction was observed with iron-rich structures, considering that the materials obtained have characteristics suitable for use in fuel cell cathodes of solid oxide type

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Textile activity results in effluents with a variety of dyes. Among the several processes for dye-uptaking from these wastewaters, sorption is one of the most effective methods, chitosan being a very promising alternative for this end. The sorption of Methyl Orange by chitosan crosslinked particles was approached using equilibrium and kinetic analyses at different pH s. Besides the standard pseudo-order analysis normally effectuated (i.e. pseudo-first-order and pseudo-second-order), a novel approach involving a pseudo-nth-order kinetics was used, nbeing determined via non-linear regression, using the Levenberg-Marquardt method. Zeta potential measurements indicated that electrostatic interactions were important for the sorption process. Regarding equilibrium experiments, data were well fitted to a hybrid Langmuir-Freundlich isotherm, and estimated Gibbs free energy of adsorption as a function of mass of dye per area of chitosan showed that the process of adsorption becomes more homogeneous as the pH of the continuous phase decreased. Considering the kinetics of sorption, although a pseudo-nth-order description yielded good fits, a kinetic equation involving diffusion adsorption phenomena was found to be more consistent in terms of a physicochemical description of the sorption process

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chitosan is a biopolymer derived from the shells of crustaceans, biodegradable, inexpensive and renewable with important physical and chemical properties. Moreover, the different modifications possible in its chemical structure generate new properties, making it an attractive polysaccharide owing to its range of potential applications. Polymers have been used in oil production operations. However, growing concern over environmental constraints has prompted oil industry to search for environmentally sustainable materials. As such, this study sought to obtain chitosan derivatives grafted with hydrophilic (poly(ethylene glycol), mPEG) and/or hydrophobic groups (n-dodecyl) via a simple (one-pot) method and evaluate their physicochemical properties as a function of varying pH using rheology, small-angle Xray scattering (SAXS), dynamic light scattering (DLS) and zeta potential. The chitosan derivatives were prepared using reductive alkylation under mild reaction conditions and the chemical structure of the polymers was characterized by nuclear magnetic resonance (1H NMR) and CHN elemental analysis. Considering a constant mPEG/Chitosan molar ratio on modification of chitosan, the solubility of the polymer across a wide pH range (acidic, neutral and basic) could only be improved when some of the amino groups were submitted to reacetylation using the one-pot method. Under these conditions, solubility is maintained even with the simultaneous insertion of n-dodecyl. On the other hand, the solubility of derivatives obtained only through mPEG incorporation using the traditional methodology, or with the ndodecyl group, was similar to that of its precursor. The hydrophilic group promoted decreased viscosity of the polymer solutions at 10 g/L in acid medium. However, at basic pH, both viscosity and thermal stability increased, as well as exhibited a pronounced pseudoplastic behavior, suggesting strong intermolecular associations in the alkaline medium. The SAXS results showed a polyelectrolyte behavior with the decrease in pH for the polymer systems. DLS analyses revealed that although the dilute polymer solutions at 1 g/L and pH 3 exhibited a high density of protonated amino groups along the polymer chain, the high degree of charge contributed significantly to aggregation, promoting increased particle size with the decrease in pH. Furthermore, the hydrophobic group also contributed to increasing the size of aggregates in solution at pH 3, whereas the hydrophilic group helped reduce their size across the entire pH range. Nevertheless, the nature of aggregation was dependent on the pH of the medium. Zeta potential results indicated that its values do not depend solely on the surface charge of the particle, but are also dependent on the net charge of the medium. In this study, water soluble associative polymers exhibit properties that can be of great interest in the petroleum industry

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of carboxymethylcellulose (CMC) in association to calcium carbonate particles (CaCO3) in most water-based drilling fluids is to reduce the fluid loss to the surrounding formation. Another essential function is to provide rheological properties capable of maintaining in suspension the cuttings during drilling operation. Therefore, it is absolutely essential to correlate the polymer chemical structure (degree of substitution, molecular weight and distribution of substituent) with the physical-chemical properties of CaCO3, in order to obtain the better result at lower cost. Another important aspect refers to the clay hydration inhibitive properties of carboxymethylcellulose (CMC) in drilling fluids systems. The clay swelling promotes an undesirable damage that reduces the formation permeability and causes serious problems during the drilling operation. In this context, this thesis consists of two main parts. The first part refers to understanding of interactions CMC-CaCO3, as well as the corresponding effects on the fluid properties. The second part is related to understanding of mechanisms by which CMC adsorption occurs onto the clay surface, where, certainly, polymer chemical structure, ionic strength, molecular weight and its solvency in the medium are responsible to affect intrinsically the clay layers stabilization. Three samples of carboximetilcellulose with different molecular weight and degree of substitution (CMC A (9 x 104 gmol DS 0.7), CMC B (2.5 x 105 gmol DS 0.7) e CMC C (2.5 x 105 gmol DS 1.2)) and three samples of calcite with different average particle diameter and particle size distribution were used. The increase of CMC degree of substitution contributed to increase of polymer charge density and therefore, reduced its stability in brine, promoting the aggregation with the increase of filtrate volume. On the other hand, the increase of molecular weight promoted an increase of rheological properties with reduction of filtrate volume. Both effects are directly associated to hydrodynamic volume of polymer molecule in the medium. The granulometry of CaCO3 particles influenced not only the rheological properties, due to adsorption of polymers, but also the filtration properties. It was observed that the lower filtrate volume was obtained by using a CaCO3 sample of a low average size particle with wide dispersion in size. With regards to inhibition of clay swelling, the CMC performance was compared to other products often used (sodium chloride (NaCl), potassium chloride (KCl) and quaternary amine-based commercial inhibitor). The low molecular weight CMC (9 x 104 g/mol) showed slightly lower swelling degree compared to the high molecular weight (2.5 x 105 g/mol) along to 180 minutes. In parallel, it can be visualized by Scanning Electron Microscopy (SEM) that the high molecular weight CMC (2.5 x 105 g/mol e DS 0.7) promoted a reduction in pores formation and size of clay compared to low molecular weight CMC (9.0 x 104 g/mol e DS 0.7), after 1000 minutes in aqueous medium. This behavior was attributed to dynamic of interactions between clay and the hydrodynamic volume of CMC along the time, which is result of strong contribution of electrostatic interactions and hydrogen bounds between carboxylate groups and hydroxyls located along the polymer backbone and ionic and polar groups of clay surface. CMC adsorbs on clay surface promoting the skin formation , which is responsible to minimize the migration of water to porous medium. With the increase of degree of substitution, it was observed an increase of pores onto clay, suggesting that the higher charge density on polymer is responsible to decrease its flexibility and adsorption onto clay surface. The joint evaluation of these results indicate that high molecular weight is responsible to better results on control of rheological, filtration and clay swelling properties, however, the contrary effect is observed with the increase of degree of substitution. On its turn, the calcite presents better results of rheological and filtration properties with the decrease of average viii particle diameter and increase of particle size distribution. According to all properties evaluated, it has been obvious the interaction of CMC with the minerals (CaCO3 and clay) in the aqueous medium

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sustainable development is a major challenge in the oil industry and has aroused growing interest in research to obtain materials from renewable sources. Carboxymethylcellulose (CMC) is a polysaccharide derived from cellulose and becomes attractive because it is water-soluble, renewable, biodegradable and inexpensive, as well as may be chemically modified to gain new properties. Among the derivatives of carboxymethylcellulose, systems have been developed to induce stimuli-responsive properties and extend the applicability of multiple-responsive materials. Although these new materials have been the subject of study, understanding of their physicochemical properties, such as viscosity, solubility and particle size as a function of pH and temperature, is still very limited. This study describes systems of physical blends and copolymers based on carboxymethylcellulose and poly (N-isopropylacrylamide) (PNIPAM), with different feed percentage compositions of the reaction (25CMC, 50CMC e 75CMC), in aqueous solution. The chemical structure of the polymers was investigated by infrared and CHN elementary analysis. The physical blends were analyzed by rheology and the copolymers by UV-visible spectroscopy, small-angle X-ray scattering (SAXS), dynamic light scattering (DLS) and zeta potential. CMC and copolymer were assessed as scale inhibitors of calcium carbonate (CaCO3) using dynamic tube blocking tests and chemical compatibility tests, as well as scanning electron microscopy (SEM). Thermothickening behavior was observed for the 50 % CMC_50 % PNIPAM and 25 % CMC_75 % PNIPAM physical blends in aqueous solution at concentrations of 6 and 2 g/L, respectively, depending on polymer concentration and composition. For the copolymers, the increase in temperature and amount of PNIPAM favored polymer-polymer interactions through hydrophobic groups, resulting in increased turbidity of polymer solutions. Particle size decreased with the rise in copolymer PNIPAM content as a function of pH (3-12), at 25 °C. Larger amounts of CMC result in a stronger effect of pH on particle size, indicating pH-responsive behavior. Thus, 25CMC was not affected by the change in pH, exhibiting similar behavior to PNIPAM. In addition, the presence of acidic or basic additives influenced particle size, which was smaller in the presence of the additives than in distilled water. The results of zeta potential also showed greater variation for polymers in distilled water than in the presence of acids and bases. The lower critical solution temperature (LCST) of PNIPAM determined by DLS corroborated the value obtained by UV-visible spectroscopy. SAXS data for PNIPAM and 50CMC indicated phase transition when the temperature increased from 32 to 34 °C. A reduction in or absence of electrostatic properties was observed as a function of increased PNIPAM in copolymer composition. Assessment of samples as scale inhibitors showed that CMC performed better than the copolymers. This was attributed to the higher charge density present in CMC. The SEM micrographs confirmed morphological changes in the CaCO3 crystals, demonstrating the scale inhibiting potential of these polymers