973 resultados para CÁLCULO INTEGRAL


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a recent paper (Automatica 49 (2013) 2860–2866), the Wirtinger-based inequality has been introduced to derive tractable stability conditions for time-delay or sampled-data systems. We point out that there exist two errors in Theorem 8 for the stability analysis of sampled-data systems, and the correct theorem is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with the analysis of the stability of delayed recurrent neural networks. In contrast to the widely used Lyapunov–Krasovskii functional approach, a new method is developed within the integral quadratic constraints framework. To achieve this, several lemmas are first given to propose integral quadratic separators to characterize the original delayed neural network. With these, the network is then reformulated as a special form of feedback-interconnected system by choosing proper integral quadratic constraints. Finally, new stability criteria are established based on the proposed approach. Numerical examples are given to illustrate the effectiveness of the new approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study we investigate the influence of the implementation of multidimensional engagement on students’ academic, social and emotional outcomes in the teaching of Operations and Supply Chain Management (OSCM) modules. Next to the academic and behavioural engagement dimensions, which are traditionally used to engage students in OSCM courses, we also incorporate a cognitive dimension to enhance integral student engagement. Up to know, integral student engagement is not reported in the OSCM literature. Cognitive engagement is based on implementation of summative self- and peer-assessment of weekly assignments. Our investigation is based on action research, conducted in an OSCM module over two consecutive years. We found that, in general, multidimensional engagement results in higher levels of academic performance, development of relationships with academic staff and their peers and emotional satisfaction. These findings are discussed in relation to several contextual factors: nature of the study material, gender, and the home location of students.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação, Mestrado, Contabilidade e Finanças, Instituto Politécnico de Santarém, Escola Superior de Gestão e Tecnologia, 2014

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nesta tese, consideram-se operadores integrais singulares com a acção extra de um operador de deslocacamento de Carleman e com coeficientes em diferentes classes de funções essencialmente limitadas. Nomeadamente, funções contínuas por troços, funções quase-periódicas e funções possuíndo factorização generalizada. Nos casos dos operadores integrais singulares com deslocamento dado pelo operador de reflexão ou pelo operador de salto no círculo unitário complexo, obtêm-se critérios para a propriedade de Fredholm. Para os coeficientes contínuos, uma fórmula do índice de Fredholm é apresentada. Estes resultados são consequência das relações de equivalência explícitas entre aqueles operadores e alguns operadores adicionais, tais como o operador integral singular, operadores de Toeplitz e operadores de Toeplitz mais Hankel. Além disso, as relações de equivalência permitem-nos obter um critério de invertibilidade e fórmulas para os inversos laterais dos operadores iniciais com coeficientes factorizáveis. Adicionalmente, aplicamos técnicas de análise numérica, tais como métodos de colocação de polinómios, para o estudo da dimensão do núcleo dos dois tipos de operadores integrais singulares com coeficientes contínuos por troços. Esta abordagem permite também a computação do inverso no sentido Moore-Penrose dos operadores principais. Para operadores integrais singulares com operadores de deslocamento do tipo Carleman preservando a orientação e com funções contínuas como coeficientes, são obtidos limites superiores da dimensão do núcleo. Tal é implementado utilizando algumas estimativas e com a ajuda de relações (explícitas) de equivalência entre operadores. Focamos ainda a nossa atenção na resolução e nas soluções de uma classe de equações integrais singulares com deslocamento que não pode ser reduzida a um problema de valor de fronteira binomial. De forma a atingir os objectivos propostos, foram utilizadas projecções complementares e identidades entre operadores. Desta forma, as equações em estudo são associadas a sistemas de equações integrais singulares. Estes sistemas são depois analisados utilizando um problema de valor de fronteira de Riemann. Este procedimento tem como consequência a construção das soluções das equações iniciais a partir das soluções de problemas de valor de fronteira de Riemann. Motivados por uma grande diversidade de aplicações, estendemos a definição de operador integral de Cauchy para espaços de Lebesgue sobre grupos topológicos. Assim, são investigadas as condições de invertibilidade dos operadores integrais neste contexto.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Generalizamos o cálculo Hahn variacional para problemas do cálculo das variações que envolvem derivadas de ordem superior. Estudamos o cálculo quântico simétrico, nomeadamente o cálculo quântico alpha,beta-simétrico, q-simétrico e Hahn-simétrico. Introduzimos o cálculo quântico simétrico variacional e deduzimos equações do tipo Euler-Lagrange para o cálculo q-simétrico e Hahn simétrico. Definimos a derivada simétrica em escalas temporais e deduzimos algumas das suas propriedades. Finalmente, introduzimos e estudamos o integral diamond que generaliza o integral diamond-alpha das escalas temporais.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A optimização estrutural é uma temática antiga em engenharia. No entanto, com o crescimento do método dos elementos finitos em décadas recentes, dá origem a um crescente número de aplicações. A optimização topológica, especificamente, surge associada a uma fase de definição de domínio efectivo de um processo global de optimização estrutural. Com base neste tipo de optimização, é possível obter a distribuição óptima de material para diversas aplicações e solicitações. Os materiais compósitos e alguns materiais celulares, em particular, encontram-se entre os materiais mais proeminentes dos nossos dias, em termos das suas aplicações e de investigação e desenvolvimento. No entanto, a sua estrutura potencialmente complexa e natureza heterogénea acarretam grandes complexidades, tanto ao nível da previsão das suas propriedades constitutivas quanto na obtenção das distribuições óptimas de constituintes. Procedimentos de homogeneização podem fornecer algumas respostas em ambos os casos. Em particular, a homogeneização por expansão assimptótica pode ser utilizada para determinar propriedades termomecânicas efectivas e globais a partir de volumes representativos, de forma flexível e independente da distribuição de constituintes. Além disso, integra processos de localização e fornece informação detalhada acerca de sensibilidades locais em metodologias de optimização multiescala. A conjugação destas áreas pode conduzir a metodologias de optimização topológica multiescala, nas quais de procede à obtenção não só de estruturas óptimas mas também das distribuições ideais de materiais constituintes. Os problemas associados a estas abordagens tendem, no entanto, a exigir recursos computacionais assinaláveis, criando muitas vezes sérias limitações à exequibilidade da sua resolução. Neste sentido, técnicas de cálculo paralelo e distribuído apresentam-se como uma potencial solução. Ao dividir os problemas por diferentes unidades memória e de processamento, é possível abordar problemas que, de outra forma, seriam proibitivos. O principal foco deste trabalho centra-se na importância do desenvolvimento de procedimentos computacionais para as aplicações referidas. Adicionalmente, estas conduzem a diversas abordagens alternativas na procura simultânea de estruturas e materiais para responder a aplicações termomecânicas. Face ao exposto, tudo isto é integrado numa plataforma computacional de optimização multiobjectivo multiescala em termoelasticidade, desenvolvida e implementada ao longo deste trabalho. Adicionalmente, o trabalho é complementado com a montagem e configuração de um cluster do tipo Beowulf, assim como com o desenvolvimento do código com vista ao cálculo paralelo e distribuído.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nesta tese de doutoramento apresentamos um cálculo das variações fraccional generalizado. Consideramos problemas variacionais com derivadas e integrais fraccionais generalizados e estudamo-los usando métodos directos e indirectos. Em particular, obtemos condições necessárias de optimalidade de Euler-Lagrange para o problema fundamental e isoperimétrico, condições de transversalidade e teoremas de Noether. Demonstramos a existência de soluções, num espaço de funções apropriado, sob condições do tipo de Tonelli. Terminamos mostrando a existência de valores próprios, e correspondentes funções próprias ortogonais, para problemas de Sturm- Liouville.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider some problems of the calculus of variations on time scales. On the beginning our attention is paid on two inverse extremal problems on arbitrary time scales. Firstly, using the Euler-Lagrange equation and the strengthened Legendre condition, we derive a general form for a variation functional that attains a local minimum at a given point of the vector space. Furthermore, we prove a necessary condition for a dynamic integro-differential equation to be an Euler-Lagrange equation. New and interesting results for the discrete and quantum calculus are obtained as particular cases. Afterwards, we prove Euler-Lagrange type equations and transversality conditions for generalized infinite horizon problems. Next we investigate the composition of a certain scalar function with delta and nabla integrals of a vector valued field. Euler-Lagrange equations in integral form, transversality conditions, and necessary optimality conditions for isoperimetric problems, on an arbitrary time scale, are proved. In the end, two main issues of application of time scales in economic, with interesting results, are presented. In the former case we consider a firm that wants to program its production and investment policies to reach a given production rate and to maximize its future market competitiveness. The model which describes firm activities is studied in two different ways: using classical discretizations; and applying discrete versions of our result on time scales. In the end we compare the cost functional values obtained from those two approaches. The latter problem is more complex and relates to rate of inflation, p, and rate of unemployment, u, which inflict a social loss. Using known relations between p, u, and the expected rate of inflation π, we rewrite the social loss function as a function of π. We present this model in the time scale framework and find an optimal path π that minimizes the total social loss over a given time interval.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de Mestrado, Contabilidade, Faculdade de Economia, Universidade do Algarve, 2015

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Relatório da prática de ensino supervisionada, Mestrado em Ensino da Matemática, Universidade de Lisboa, 2011

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Relatório da Prática de Ensino Supervisionada, Ensino de Filosofia, Universidade de Lisboa, 2014

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Relatório da Prática de Ensino Supervisionada, Mestrado em Ensino das Artes Visuais, Universidade de Lisboa, 2014

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de mestrado, Ciências da Educação (Área de especialidade em Administração Educacional), Universidade de Lisboa, Instituto de Educação, 2015

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de doutoramento, Educação (Didática da Matemática), Universidade de Lisboa, Instituto de Educação, 2016