992 resultados para molecular beam epitaxy (MBE)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this work is to provide an overview on the recent advances in the selective area growth (SAG) of (In)GaN nanostructures by plasma assisted molecular beam epitaxy, focusing on their potential as building blocks for next generation LEDs. The first three sections deal with the basic growth mechanisms of GaN SAG and the emission control in the entire ultraviolet to infrared range, including approaches for white light emission, using InGaN disks and thick segments on axial nanocolumns. SAG of axial nanostructures is eveloped on both GaN/sapphire templates and GaN-buffered Si(111). As an alternative to axial nanocolumns, section 4 reports on the growth and characterization of InGaN/GaN core-shell structures on an ordered array of top-down patterned GaN microrods. Finally, section 5 reports on the SAG of GaN, with and without InGaN insertion, on semi-polar (11-22) and non-polar (11-20) templates. Upon SAG the high defect density present in the templates is strongly reduced as indicated by a dramatic improvement of the optical properties. In the case of SAG on nonpolar (11-22) templates, the formation of nanostructures with a low aspect ratio took place allowing for the fabrication of high-quality, non-polar GaN pseudo-templates by coalescence of these nanostructures.
Resumo:
In this manuscript, we propose a criterion for a weakly bound complex formed in a supersonic beam to be characterized as a `hydrogen bonded complex'. For a `hydrogen bonded complex', the zero point energy along any large amplitude vibrational coordinate that destroys the orientational preference for the hydrogen bond should be significantly below the barrier along that coordinate so that there is at least one bound level. These are vibrational modes that do not lead to the breakdown of the complex as a whole. If the zero point level is higher than the barrier, the `hydrogen bond' would not be able to stabilize the orientation which favors it and it is no longer sensible to characterize a complex as hydrogen bonded. Four complexes, Ar-2-H2O, Ar-2-H2S, C2H4-H2O and C2H4-H2S, were chosen for investigations. Zero point energies and barriers for large amplitude motions were calculated at a reasonable level of calculation, MP2(full)/aug-cc-pVTZ, for all these complexes. Atoms in molecules (AIM) theoretical analyses of these complexes were carried out as well. All these complexes would be considered hydrogen bonded according to the AIM theoretical criteria suggested by Koch and Popelier for C-H center dot center dot center dot O hydrogen bonds (U. Koch and P. L. A. Popelier, J. Phys. Chem., 1995, 99, 9747), which has been widely and, at times, incorrectly used for all types of contacts involving H. It is shown that, according to the criterion proposed here, the Ar-2-H2O/H2S complexes are not hydrogen bonded even at zero kelvin and C2H4-H2O/H2S complexes are. This analysis can naturally be extended to all temperatures. It can explain the recent experimental observations on crystal structures of H2S at various conditions and the crossed beam scattering studies on rare gases with H2O and H2S.
Resumo:
An ultraviolet photoelectron spectrometer for the study of van der Waals molecules has been designed and fabricated indigenously. The spectrometer consists of an HeI discharge lamp, a molecular beam sample inlet system, an electrostatic lens, a 180-degrees hemispherical electrostatic analyser and a channeltron detector. Performance of the spectrometer is illustrated with an example.
Resumo:
New molecular beam scattering experiments have been performed to measure the total ( elastic plus inelastic) cross sections as a function of the velocity in collisions between water and hydrogen sulfide projectile molecules and the methane target. Measured data have been exploited to characterize the range and strength of the intermolecular interaction in such systems, which are of relevance as they drive the gas phase molecular dynamics and the clathrate formation. Complementary information has been obtained by rotational spectra, recorded for the hydrogen sulfide-methane complex, with a pulsed nozzle Fourier transform microwave spectrometer. Extensive ab initio calculations have been performed to rationalize all the experimental findings. The combination of experimental and theoretical information has established the ground for the understanding of the nature of the interaction and allows for its basic components to be modelled, including charge transfer, in these weakly bound systems. The intermolecular potential for H2S-CH4 is significantly less anisotropic than for H2O-CH4, although both of them have potential minima that can be characterized as `hydrogen bonded'.
Resumo:
Self-assembled InN quantum dots (QDs) were grown on Si(111) substrate using plasma assisted molecular beam epitaxy (PA-MBE). Single-crystalline wurtzite structure of InN QDs was confirmed by X-ray diffraction. The dot densities were varied by varying the indium flux. Variation of dot density was confirmed by FESEM images. Interdigitated electrodes were fabricated using standard lithography steps to form metal-semiconductor-metal (MSM) photodetector devices. The devices show strong infrared response. It was found that the samples with higher density of InN QDs showed lower dark current and higher photo current. An explanation was provided for the observations and the experimental results were validated using Silvaco Atlas device simulator.
Resumo:
The InAsxSb1-x films were grown on (100) GaSb substrates by liquid-phase epitaxy, and their structural, electrical, and optical properties were investigated. The high-resolution x-ray diffraction results reveal that the single crystalline InAsxSb1-x films with a midrange composition are epitaxially grown on the GaSb substrates. Temperature dependence of the Hall mobility was theoretically modeled by considering several predominant scattering mechanisms. The results indicate that ionized impurity and dislocation scatterings dominate at low temperatures, while polar optical phonon scattering is important at room temperature (RT). Furthermore, the InAsxSb1-x films with the higher As composition exhibit the better crystalline quality and the higher mobility. The InAs0.35Sb0.65 film exhibits a Hall mobility of 4.62x10(4) cm(2) V-1 s(-1). The cutoff wavelength of photoresponse is extended to about 12 mu m with a maximum responsivity of 0.21 V/W at RT, showing great potential for RT long-wavelength infrared detection. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2989116]
Resumo:
The growth of InAsxSb1-x films on (100) GaSb substrates by liquid-phase epitaxy (LPE) has been investigated and epitaxial InAs0.3Sb0.7 films with InAs0.9Sb0.09 buffer layers have been successfully obtained. The low X-ray rocking curve FHWM values of InAs0.3Sb0.7 layer shows the high quality of crystal-orientation structure. Hall measurements show that the highest electron mobility in the samples obtained is 2.9 x 10(4) cm(2) V-1 s(-1) and the carrier density is 2.78 x 10(16)cm(-3) at room temperature (RT). The In As0.3Sb0.7 films grown on (10 0) GaSb substrates exhibit excellent optical performance with a cut-off wavelength of 12 mu m. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Top-illuminated metamorphic InGaAs p-i-n photodetectors (PDs) with 50% cut-off wavelength of 1.75 mu m at room temperature are fabricated on GaAs substrates. The PDs are grown by a solid-source molecular beam epitaxy system. The large lattice mismatch strain is accommodated by growth of a linearly graded buffer layer to create a high quality virtual InP substrate indium content in the metamorphic buffer layer linearly changes from 2% to 60%. The dark current densities are typically 5 x 10(-6) A/cm(2) at 0 V bias and 2.24 x 10(-4) A/cm(2) at a reverse bias of 5 V. At a wavelength of 1.55 mu m, the PDs have an optical responsivity of 0.48 A/W, a linear photoresponse up to 5 mW optical power at -4 V bias. The measured -3 dB bandwidth of a 32 mu m diameter device is 7 GHz. This work proves that InGaAs buffer layers grown by solid source MBE are promising candidates for GaAs-based long wavelength devices.
Resumo:
The InAsxSb1-x films were grown on (100) GaSb substrates by liquid-phase epitaxy, and their structural, electrical, and optical properties were investigated. The high-resolution x-ray diffraction results reveal that the single crystalline InAsxSb1-x films with a midrange composition are epitaxially grown on the GaSb substrates. Temperature dependence of the Hall mobility was theoretically modeled by considering several predominant scattering mechanisms. The results indicate that ionized impurity and dislocation scatterings dominate at low temperatures, while polar optical phonon scattering is important at room temperature (RT). Furthermore, the InAsxSb1-x films with the higher As composition exhibit the better crystalline quality and the higher mobility. The InAs0.35Sb0.65 film exhibits a Hall mobility of 4.62x10(4) cm(2) V-1 s(-1). The cutoff wavelength of photoresponse is extended to about 12 mu m with a maximum responsivity of 0.21 V/W at RT, showing great potential for RT long-wavelength infrared detection. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2989116]
Resumo:
We grow In-GaAs quantum dot (QD) at low growth rate with 70 times insertion of growth interruption in MBE system. It is found that because of the extreme growth condition, QDs exhibit a thick wetting layer, large QD height value and special surface morphology which is attributed to the In segregation effect. Temperature dependence of photoluminescence measurement shows that this kind of QDs has a good thermal stability which is explained in terms of a "group coupling" model put forward by us. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The structural and optical properties of MBE-grown GaAsSb/GaAs multiple quantum wells (MQWs) as well as strain-compensated GaAsSb/GaAs/GaAsP MQWs are investigated. The results of double crystal X-ray diffraction and reciprocal space mapping show that when strain-compensated layers are introduced, the interface quality of QW structure is remarkably improved, and the MQW structure containing GaAsSb layers with a high Sb composition can be coherently grown. Due to the influence of inserted GaAsP layers on the energy band and carrier distribution of QWs, the optical properties of GaAsSb/GaAs/GaAsP MQWs display a lot of features mainly characteristic of type-I QWs despite the type-II GaAsSb/GaAs interfaces exist in the structure. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Self-organized InAs quantum dots (QDs) have been fabricated by molecular beam epitaxy. The authors try to use a slow positron beam to detect defects in and around self-organized QDs, and point defects are observed in GaAs cap layer above QDs. For the self-organized InAs QDs without strain-reducing layer, it is free of defects. However, by introducing a strain-reducing layer, the density of point defects around larger sized InAs QDs increased. The above results suggest that low energy positron beam measurements may be a good approach to detect depth profiles of defects in QD materials. (c) 2007 American Institute of Physics.