981 resultados para Upconversion luminescence (UCL)
Resumo:
The photoluminescence (PL) properties of ZnSe films grown by hot wall epitaxy are reported. The PL spectra show clear neutral donor-bound exciton peak; donor acceptor pair (DAP) peak, conduction band to acceptor (CA) peak, and their phonon replicas until fourth order. The conduction band to acceptor peak and it's phonon replicas exist until room temperature. From the ratio of PL intensities of DAP and CA peaks and their replicas, we obtain the Huang-Rhys factor S = 0.58, in agreement with other experiments for acceptor-bound exciton transitions. From the temperature dependence of PL intensities we derive the activation energy of thermal quenching process for the DAP transitions as about 7 meV.
Resumo:
In the photoluminescence (PL) of BaFBr:Eu2+,Eu3+, the emissions of Ea(2+), carrier electron-hole (e-h) recombination, and Eu3+ are observed, while in the photostimulated luminescence (PSL) only the emission of Eu2+ is exhibited. This disappearance of e-h recombination in PSL is considered to be caused by carrier migration during photo-stimulation. (C) 1997 American Institute of Physics.
Resumo:
The excitation spectrum of CdS dusters in zeolite-Y is consistent with their absorption spectrum, both showing two absorption bands that are assigned to the Is-is and Is-lp transitions, respectively. A new emission at 400 nn is considered to be the recombination of the bounded excitons. The emission firstly increases then decreases with increasing cluster size or loading. The emission by excitation into the Is-is band is stronger and sharper than that by excitation into the Is-lp band. This phenomenon is attributed to the size inhomogeneity and the strong electron-phonon interaction of the dusters. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
After x-irradiation for 10 s, luminescence from BaFBr:Eu2+ phosphors by photostimulation of longer wavelength than F absorption bands was observed and assigned to the surface states or intrinsic defects of the powders. It is found that the luminescence by photostimulation into F bands can be reduced via electron migration from F centers into the surface states or intrinsic defects, thus reducing the x-ray storage or image stability. Surface passivation can lower these defects and improve the phosphors or imaging plate quality. (C) 1996 American Institute of Physics.
Resumo:
Photo-luminescence and electro-luminescence from step-graded index SiGe/Si quantum well grown by molecular beam epitaxy is reported. The SiGe/Si step-graded index quantum well structure is beneficial to the enhancing of electro-luminescence. The optical and electrical properties of this structure are discussed.
Resumo:
The photoluminescence (PL) and photostimulated luminescence (PSL) of BaFBr: Eu phosphors are reported. In the photoluminescence of BaFBr:Eu, the emission of Eu2+, e-h recombination and Eu3+ have been observed, while in the photostimulated luminescence only the emission of Eu2+ was observed. This phenomenon may be explained well by the suggestion of a two-hand model for the host emission in which the host emission energy may transfer to Eu2+ difference of excitation in those two processes results in different transfer rates which makes the PL and PSL emission different.
Resumo:
Photoluminescence studies on porous silicon show that there are luminescence centers present in the surface states. By taking photoluminescence spectra of porous silicon with respect to temperature, a distinct peak can be observed in the temperature range 100-150 K. Both linear and nonlinear relationships were observed between excitation laser power and the photoluminescence intensity within this temperature range. In addition, there was a tendency for the photoluminescence peak to red shift at low temperature as well as at low excitation power. This is interpreted as indicating that the lower energy transition becomes dominant at low temperature and excitation power. The presence of these luminescence centers can be explained in terms of porous silicon as a mixture of silicon clusters and wires in which quantum confinement along with surface passivation would cause a mixing of Gamma and X band structure between the surface states and the bulk. This mixing would allow the formation of luminescence centers.
Resumo:
High concentrations of Si and Zn were implanted into (0001) AlN bulk crystal grown by the self-seeded physical vapor transport (PVT) method. Cathode luminescence (CL) and photoluminescence (PL) spectroscopy were used to investigate the defects and properties of the implanted AlN. PL spectra of the implanted AlN are dominated by a broad near-band luminescence peak between 200 and 254 nm. After high temperature annealing, implantation induced lattice damages are recovered and the PL intensity increases significantly, suggesting that the implanted impurity Si and Zn occupy lattice site of Al. CL results imply that a 457 nm peak is Al vacancy related. Resistance of the AlN samples is still very high after annealing, indicating a low electrical activation efficiency of the impurity in AlN single crystal.
Resumo:
于2010-11-23批量导入
Resumo:
In this work, The TBS glass microspheres doped with Er3+ for morphology-dependent resonances of upconversion emission were designed. The glass sample components are 25TiO(2)-27BaCO(3)-8Ba(NO3)(2)-6ZnO(2)-9CaCO(3)-5H(3)BO(3)-10SiO(2)-7water glass-3Er(2)O(3) (wt%), and the emission spectra of TBS glass and a TBS glass microsphere (about 48 mum in diameter) were measured under 633 nm excitation and discussed. The strong morphology-dependent resonances of upconversion luminescences in the microsphere were observed. The observed resonances could be assigned by using the well-known Lorenz-Mie Formalism. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Erbium-doped silica glasses were made by sol-gel process. Intensive photoluminescence (PL) spectra from the Er-doped silica glasses at room temperature were measured. A broadband peak at 1535 ma, corresponding to the I-4(13/2)-I-4(15/2) transition, its full width at half-maximum (FWHM) of 10 nm, and a shoulder at 1546 nm in the PL spectra were observed. At lower temperatures, main line of 1535 nm and another line of 1552 Mn instead of 1546 nm appear. So two types of luminescence centers must exist in the samples at different temperature. The intensity of main line does not decrease obviously with increasing temperature. By varying the Er ion concentration in the range of 0.2 wt% - 5wt%, the highest photoluminescence intensity was obtained at 0.2wt% erbium doped concentration. Luminescence intensity decreases with increasing erbium concentration. Cooperative upconversion was used to explain the concentration quenching of luminescence from silica glass with high erbium concentration. Extended X-ray absorption fine structure measurements were carried out. It was found that the majority of the erbium impurities in the glasses have a local structure of eight first neighbor oxygen atoms at a mean distance of 0.255 nm, which is consistent with the typical coordination structure of rare earth ion.
Resumo:
Unintentionally doped and Si-doped single crystal n-GaN films have been grown on alpha-Al2O3 (0001) substrates by LP-MOCVD. Room temperature photoluminescence measurement showed that besides the bandedges, the spectrum of an undoped sample was a broad deep-level emission band peaking from 2.19 to 2.30eV, whereas the spectrum for a Si-doped sample was composed of a dominant peak of 2.19eV and a shoulder of 2.32eV. At different temperatures, photoconductance buildup and its decay were also observed for both samples.. The likely origins of persistent photoconductivity and yellow luminescence, which might be associated with deep defects inclusive of either Ga vacancy(V-Ga)/Ga vacancy complex induced by impurities or N antisite (N-Ga), will be proposed.
Resumo:
In this study, we report the dependences of infrared luminescence properties of Er-implanted GaN thin films (GaN:Er) on the kinds of substrates used to grow GaN, the growth techniques of GaN, the implantation parameters and annealing procedures. The experimental results showed that the photoluminescence (PL) intensity at 1.54 mum was severely influenced by different kinds of substrates. The integrated PL peak intensity from GaN:Er /Al2O3 (00001) was three and five times stronger than that from GaN:Er /Si (111) grown by molecular beam epitaxy (MBE) and by metalorganic chemical vapor deposition (MOCVD), respectively. The PL spectra observed from GaN:Er/Al2O3 (0001) grown by MOCVD and by MBE displayed a similar feature, but those samples grown by MOCVD exhibited a stronger 1.54 mum PL. It was also found that there was a strong correlation between the PL intensity with ion implantation parameters and annealing procedures. Ion implantation induced damage in host material could be only partly recovered by an appropriate annealing temperature procedure. The thermal quenching of PL from 15 to 300 K was also estimated. In comparison with the integrated PL intensity at 15 K, it is reduced by only about 30 % when going up to 300 K for GaN:Er/Al2O3 sample grown by MOCVD. Our results also show that the strongest PL intensity comes from GaN:Er grown on Al2O3 substrate by MOCVD. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The ground and excited state excitonic transitions of stacked InAs self-organized quantum dots (QDs) in a laser diode structure are studied. The interband absorption transitions of QDs are investigated by non-destructive PV spectra, indicating that the strongest absorption is related to the excited states with a high density and coincides with the photon energy of lasing emission. The temperature and excitation (electric injection) intensity dependences of photoluminescence and electroluminescence indicate the influence of state filling effect on the luminescence of threefold stacked QDs. The results indicate that different coupling channels exist between electronic states in both vertical and lateral directions.