930 resultados para Pseudomonotone Generalized Directional Derivative
Resumo:
Une des façons d’approcher la question de l’existence de raisons partiales non-dérivatives d’une quelconque sorte consiste à expliquer ce que sont les raisons partiales et ensuite à chercher à savoir s’il y a des raisons de cette sorte. Si de telles raisons existent, alors il est au moins possible qu’il y ait des raisons partiales d’amitié. C’est cette approche que j’adopterai ici, et elle produit des résultats intéressants. Le premier a trait à la structure des raisons partiales. C’est au moins une condition nécessaire pour qu’une raison soit partiale qu’elle aie une composante relationnelle explicite. Cette composante, techniquement parlant, est un relatum dans la relation d’être une raison qui elle-même est une relation entre la personne à qui la raison s’applique et la personne concernée par l’action pour laquelle il y a une raison. La deuxième conclusion de ce texte est que cette composante relationnelle est aussi requise dans de nombreuses sortes de raisons admises comme impartiales. Afin d’éviter de banaliser la distinction entre raisons partiales et impartiales nous devons appliquer une condition suffisante additionnelle. Finalement, bien qu’il pourrait s’avérer possible de distinguer les raisons impartiales ayant une composante relationnelle des raisons partiales, cette approche suggère que la question de savoir si l’éthique est partiale ou impartiale devra se régler au niveau de l’éthique normative, ou à tout le moins, qu’elle ne pourra se régler au niveau du discours sur la nature des raisons d’agir.
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
new PVC membrane ion selective electrode which is highly selective towards Ni(II) ions was constructed using a Schiff base containing a binaphthyl moiety as the ionophore. The sensor exhibited a good Nernstian response for nickel ions over the concentration range 1.0 × 10–1 – 5.0 × 10–6 M with a lower limit of detection of 1.3 × 10–6 M. It has a fast response time and can be used for a period of 4 months with a good reproducibility. The sensor is suitable for use in aqueous solutions in a wide pH range of 3.6 – 7.4 and works satisfactorily in the presence of 25% (v/v) methanol or ethanol. The sensor shows high selectivity to nickel ions over a wide variety of cations. It has been successfully used as an indicator electrode in the potentiometric titration of nickel ions against EDTA and also for the direct determination of nickel content in real samples: effluent samples, chocolates and hydrogenated oils.
Resumo:
We report on experiments aimed at comparing the hysteretic response of a Cu-Zn-Al single crystal undergoing a martensitic transition under strain-driven and stress-driven conditions. Strain-driven experiments were performed using a conventional tensile machine while a special device was designed to perform stress-driven experiments. Significant differences in the hysteresis loops were found. The strain-driven curves show reentrant behavior yield point which is not observed in the stress-driven case. The dissipated energy in the stress-driven curves is larger than in the strain-driven ones. Results from recently proposed models qualitatively agree with experiments.
Resumo:
The set of vertices that maximize (minimize) the remoteness is the antimedian (median) set of the profile. It is proved that for an arbitrary graph G and S V (G) it can be decided in polynomial time whether S is the antimedian set of some profile. Graphs in which every antimedian set is connected are also considered.
Resumo:
In this paper, we study some dynamic generalized information measures between a true distribution and an observed (weighted) distribution, useful in life length studies. Further, some bounds and inequalities related to these measures are also studied
Resumo:
In dieser Doktorarbeit wird eine akkurate Methode zur Bestimmung von Grundzustandseigenschaften stark korrelierter Elektronen im Rahmen von Gittermodellen entwickelt und angewandt. In der Dichtematrix-Funktional-Theorie (LDFT, vom englischen lattice density functional theory) ist die Ein-Teilchen-Dichtematrix γ die fundamentale Variable. Auf der Basis eines verallgemeinerten Hohenberg-Kohn-Theorems ergibt sich die Grundzustandsenergie Egs[γgs] = min° E[γ] durch die Minimierung des Energiefunktionals E[γ] bezüglich aller physikalischer bzw. repräsentativer γ. Das Energiefunktional kann in zwei Beiträge aufgeteilt werden: Das Funktional der kinetischen Energie T[γ], dessen lineare Abhängigkeit von γ genau bekannt ist, und das Funktional der Korrelationsenergie W[γ], dessen Abhängigkeit von γ nicht explizit bekannt ist. Das Auffinden präziser Näherungen für W[γ] stellt die tatsächliche Herausforderung dieser These dar. Einem Teil dieser Arbeit liegen vorausgegangene Studien zu Grunde, in denen eine Näherung des Funktionals W[γ] für das Hubbardmodell, basierend auf Skalierungshypothesen und exakten analytischen Ergebnissen für das Dimer, hergeleitet wird. Jedoch ist dieser Ansatz begrenzt auf spin-unabhängige und homogene Systeme. Um den Anwendungsbereich von LDFT zu erweitern, entwickeln wir drei verschiedene Ansätze zur Herleitung von W[γ], die das Studium von Systemen mit gebrochener Symmetrie ermöglichen. Zuerst wird das bisherige Skalierungsfunktional erweitert auf Systeme mit Ladungstransfer. Eine systematische Untersuchung der Abhängigkeit des Funktionals W[γ] von der Ladungsverteilung ergibt ähnliche Skalierungseigenschaften wie für den homogenen Fall. Daraufhin wird eine Erweiterung auf das Hubbardmodell auf bipartiten Gittern hergeleitet und an sowohl endlichen als auch unendlichen Systemen mit repulsiver und attraktiver Wechselwirkung angewandt. Die hohe Genauigkeit dieses Funktionals wird aufgezeigt. Es erweist sich jedoch als schwierig, diesen Ansatz auf komplexere Systeme zu übertragen, da bei der Berechnung von W[γ] das System als ganzes betrachtet wird. Um dieses Problem zu bewältigen, leiten wir eine weitere Näherung basierend auf lokalen Skalierungseigenschaften her. Dieses Funktional ist lokal bezüglich der Gitterplätze formuliert und ist daher anwendbar auf jede Art von geordneten oder ungeordneten Hamiltonoperatoren mit lokalen Wechselwirkungen. Als Anwendungen untersuchen wir den Metall-Isolator-Übergang sowohl im ionischen Hubbardmodell in einer und zwei Dimensionen als auch in eindimensionalen Hubbardketten mit nächsten und übernächsten Nachbarn. Schließlich entwickeln wir ein numerisches Verfahren zur Berechnung von W[γ], basierend auf exakten Diagonalisierungen eines effektiven Vielteilchen-Hamilton-Operators, welcher einen von einem effektiven Medium umgebenen Cluster beschreibt. Dieser effektive Hamiltonoperator hängt von der Dichtematrix γ ab und erlaubt die Herleitung von Näherungen an W[γ], dessen Qualität sich systematisch mit steigender Clustergröße verbessert. Die Formulierung ist spinabhängig und ermöglicht eine direkte Verallgemeinerung auf korrelierte Systeme mit mehreren Orbitalen, wie zum Beispiel auf den spd-Hamilton-Operator. Darüber hinaus berücksichtigt sie die Effekte kurzreichweitiger Ladungs- und Spinfluktuationen in dem Funktional. Für das Hubbardmodell wird die Genauigkeit der Methode durch Vergleich mit Bethe-Ansatz-Resultaten (1D) und Quanten-Monte-Carlo-Simulationen (2D) veranschaulicht. Zum Abschluss wird ein Ausblick auf relevante zukünftige Entwicklungen dieser Theorie gegeben.
Resumo:
In the theory of the Navier-Stokes equations, the proofs of some basic known results, like for example the uniqueness of solutions to the stationary Navier-Stokes equations under smallness assumptions on the data or the stability of certain time discretization schemes, actually only use a small range of properties and are therefore valid in a more general context. This observation leads us to introduce the concept of SST spaces, a generalization of the functional setting for the Navier-Stokes equations. It allows us to prove (by means of counterexamples) that several uniqueness and stability conjectures that are still open in the case of the Navier-Stokes equations have a negative answer in the larger class of SST spaces, thereby showing that proof strategies used for a number of classical results are not sufficient to affirmatively answer these open questions. More precisely, in the larger class of SST spaces, non-uniqueness phenomena can be observed for the implicit Euler scheme, for two nonlinear versions of the Crank-Nicolson scheme, for the fractional step theta scheme, and for the SST-generalized stationary Navier-Stokes equations. As far as stability is concerned, a linear version of the Euler scheme, a nonlinear version of the Crank-Nicolson scheme, and the fractional step theta scheme turn out to be non-stable in the class of SST spaces. The positive results established in this thesis include the generalization of classical uniqueness and stability results to SST spaces, the uniqueness of solutions (under smallness assumptions) to two nonlinear versions of the Euler scheme, two nonlinear versions of the Crank-Nicolson scheme, and the fractional step theta scheme for general SST spaces, the second order convergence of a version of the Crank-Nicolson scheme, and a new proof of the first order convergence of the implicit Euler scheme for the Navier-Stokes equations. For each convergence result, we provide conditions on the data that guarantee the existence of nonstationary solutions satisfying the regularity assumptions needed for the corresponding convergence theorem. In the case of the Crank-Nicolson scheme, this involves a compatibility condition at the corner of the space-time cylinder, which can be satisfied via a suitable prescription of the initial acceleration.
Resumo:
This report addresses the problem of acquiring objects using articulated robotic hands. Standard grasps are used to make the problem tractable, and a technique is developed for generalizing these standard grasps to increase their flexibility to variations in the problem geometry. A generalized grasp description is applied to a new problem situation using a parallel search through hand configuration space, and the result of this operation is a global overview of the space of good solutions. The techniques presented in this report have been implemented, and the results are verified using the Salisbury three-finger robotic hand.
Resumo:
We propose a nonparametric method for estimating derivative financial asset pricing formulae using learning networks. To demonstrate feasibility, we first simulate Black-Scholes option prices and show that learning networks can recover the Black-Scholes formula from a two-year training set of daily options prices, and that the resulting network formula can be used successfully to both price and delta-hedge options out-of-sample. For comparison, we estimate models using four popular methods: ordinary least squares, radial basis functions, multilayer perceptrons, and projection pursuit. To illustrate practical relevance, we also apply our approach to S&P 500 futures options data from 1987 to 1991.
Resumo:
The Aitchison vector space structure for the simplex is generalized to a Hilbert space structure A2(P) for distributions and likelihoods on arbitrary spaces. Central notations of statistics, such as Information or Likelihood, can be identified in the algebraical structure of A2(P) and their corresponding notions in compositional data analysis, such as Aitchison distance or centered log ratio transform. In this way very elaborated aspects of mathematical statistics can be understood easily in the light of a simple vector space structure and of compositional data analysis. E.g. combination of statistical information such as Bayesian updating, combination of likelihood and robust M-estimation functions are simple additions/ perturbations in A2(Pprior). Weighting observations corresponds to a weighted addition of the corresponding evidence. Likelihood based statistics for general exponential families turns out to have a particularly easy interpretation in terms of A2(P). Regular exponential families form finite dimensional linear subspaces of A2(P) and they correspond to finite dimensional subspaces formed by their posterior in the dual information space A2(Pprior). The Aitchison norm can identified with mean Fisher information. The closing constant itself is identified with a generalization of the cummulant function and shown to be Kullback Leiblers directed information. Fisher information is the local geometry of the manifold induced by the A2(P) derivative of the Kullback Leibler information and the space A2(P) can therefore be seen as the tangential geometry of statistical inference at the distribution P. The discussion of A2(P) valued random variables, such as estimation functions or likelihoods, give a further interpretation of Fisher information as the expected squared norm of evidence and a scale free understanding of unbiased reasoning
Resumo:
Esta tesis está dividida en dos partes: en la primera parte se presentan y estudian los procesos telegráficos, los procesos de Poisson con compensador telegráfico y los procesos telegráficos con saltos. El estudio presentado en esta primera parte incluye el cálculo de las distribuciones de cada proceso, las medias y varianzas, así como las funciones generadoras de momentos entre otras propiedades. Utilizando estas propiedades en la segunda parte se estudian los modelos de valoración de opciones basados en procesos telegráficos con saltos. En esta parte se da una descripción de cómo calcular las medidas neutrales al riesgo, se encuentra la condición de no arbitraje en este tipo de modelos y por último se calcula el precio de las opciones Europeas de compra y venta.
Resumo:
Resumen tomado de la publicaci??n
Resumo:
Resumen tomado de la publicaci??n