978 resultados para Nd : YAG
Resumo:
A series of HR coatings, with and without overcoat, were prepared by electron beam evaporation using the same deposition process. The laser-induced damage threshold (LIDT) was measured by a 355 nm Nd:YAG laser with a pulse width of 8 ns. Damage morphologies of samples were observed by Leica-DMRXE Microscope. The stress was measured by viewing the substrate deformation before and after coatings deposition using an optical interferometer. Reflectance of the samples was measured by Lambda 900 Spectrometer. The theoretical results of electric field distributions of the samples were calculate by thin film design software (TFCalc). It was found that SiO2 overcoat had improved the LIDT greatly, while MgF2 overcoat had little effect on the LIDT because of its high stress in the HR coatings. The damage morphologies were different among HR coatings with and without overcoats. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
使用脉宽12ns,频率10Hz的1064nm调Q Nd:YAG激光器,研究了高反射膜在重复率激光作用下的损伤的累积效应。实验发现,高反射膜的损伤阈值随辐照脉冲数增加而降低,表现出明显的累积效应。通过对损伤阈值和损伤概率以及辐照次数的统计性研究.并结合单脉冲辐照的结果,说明了存在于薄膜中微小的缺陷参与了多脉冲激光对薄膜的损伤过程。可用预损伤机制解释实验结果。得到了关于IBS制备的高反射膜的损伤阈值和照射次数的关系式,并用实验结果进行验证.发现具有很好的一致性。实验过程中样品的损伤形貌通过Nomarski偏光
Resumo:
研究了高反射膜在多脉冲激光作用下损伤的累积效应.实验中使用1064nm调Q的Nd:YAG激光器,脉宽是12ns,频率为10Hz.实验发现:高反射膜的损伤阈值随辐照脉冲数增加而降低,表现出明显的累积效应.通过对损伤阈值和损伤概率以及辐照次数的统计性研究,并结合单脉冲辐照的结果,说明了存在于薄膜中微小的缺陷参与了多脉冲激光对薄膜的损伤过程,得到了制备IBS高反射膜的损伤闽值和照射次数的关系式,用Nomarski偏光显微镜观察了实验过程中样品的损伤形貌,发现是典型的缺陷损伤.
Resumo:
HfO2 films were deposited by electron beam evaporation with different deposition parameters. The properties such as refractive index, weak absorption, and laser induced damage thresholds (LIDTs) of these films have been investigated. It was found that when pulsed Nd:YAG 1064 nm laser is used to investigate LIDT of films: Metallic character is the main factor that influences LIDTs of films obtained from Hf starting material by ion-assisted reaction, and films prepared with higher momentum transfer parameter P have fewer metallic character; The ion-assisted reaction parameters are key points for preparing high LIDT films and if the parameters are chose properly, high LIDT films can be obtained. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
研究了Ta2O5/SiO2硬膜双腔干涉滤光片带内、带边及带外的吸收和激光损伤特性。实验发现,对于作用激光,带通滤光片的驻波场分布、吸收率和损伤阈值在带内、带边和带外的响应特性对作用激光波长均呈现出明显的选择性。根据实验结果,结合滤光片的驻波场分析,给出了带通滤光片的损伤机理。
Resumo:
利用Nd:YAG调Q单脉冲激光和自由脉冲激光对硬膜窄带干涉滤光片进行激光损伤阈值的测试,并且采用表面热透镜技术测量了滤光片的吸收率。实验发现:窄带干涉滤光片的吸收率和激光损伤阈值强烈依赖于辐照激光波长与窄带干涉滤光片通带的相对位置;在调Q单脉冲激光作用下,不同中心波长的滤光片损伤形貌存在明显的差别,而在自由脉冲激光作用下,各滤光片的损伤形貌则趋于相同.均表现为典型的热熔烧蚀破坏。根据实验结果,结合损伤形貌,通过驻波场理论对激光作用下滤光片内电场分布的分析与模拟.探讨了两种激光模式作用下滤光片的损伤特征和损
Resumo:
abstract {LaF3 single-layer coatings were prepared by thermal boat evaporation at the deposition temperatures of 189, 255, 277 and 321°C respectively. The crystal structures of the coatings were characterized by X-ray diffraction (XRD). A spectrophotometer was employed to measure its transmittance. Moreover, refractive index, extinction coefficient and cut-off wavelength were obtained from the measured transmittance spectral curve. The residual stress was evaluated by the Stoney's equation and optical interferometer. Laser induce damage threshold (LIDT) was performed by a tripled Nd:YAG laser system. The results show that the crystallization status becomes better with the deposition temperature increasing. Correspondingly, the grain size also gets larger. Meanwhile, the coatings become more compact and the refractive index increases. However, the absorption of coatings seriously rises and the cut-off wavelength drifts to the long wave. In addition, the residual stress also increases and the intrinsic stress plays a determinant role in the coating. The LIDT of the coating also enhances at high temperature.}
Resumo:
用热舟蒸发方法在不同的沉积速率下制备了LaF3单层膜,并对部分单层膜进行了真空退火。分别采用X射线衍射(XRD),Lambda 900 光谱仪和355 nm Nd∶YAG脉冲激光测试了薄膜的晶体结构、透射光谱和激光损伤阈值(LIDT),并通过透射光谱计算得到样品的折射率和消光系数。实验结果表明,增大沉积速率有利于LaF3薄膜的结晶和择优生长,可以提高薄膜的致密性和折射率,但薄膜的抗激光损伤能力有所下降;沉积速率太大,又会恶化薄膜的结晶性能,同时薄膜中产生大量孔洞,薄膜的机械强度降低,导致薄膜的折射率减小和
Resumo:
The effects of working pressure on properties of Al2O3 thin films are investigated. Transmittance of the Al2O3 thin film is measured by a Lambda 900 spectrometer. Laser-induced damage threshold (LIDT) is measured by a Nd:YAG laser at 355nm with a pulse width of 7ns. Microdefects were observed under a Nomarski microscope. The samples are characterized by optical properties and defect, as well as LIDT under the 355 nm Nd: YAG laser radiation. It is found that the working pressure has fundamental effect on the LIDT. It is the absorption rather than the microdefect that plays an important role on the LID T of Al2O3 thin film.
Resumo:
A series or Ta2O5 films with different SiO2 additional layers including overcoat, undercoat and interlayer was prepared by electron beam evaporation under the same deposition process. Absorption of samples was measured using the surface thermal lensing (STL) technique. The electric field distributions of the samples were theoretical predicted using thin film design software (TFCalc). The laser induced damage threshold (LIDT) was assessed using an Nd:YAG laser operating at 1064 nm with a pulse length of 12 ns. It was found that SiO2 additional layers resulted in a slight increase of the absorption, whereas they exerted little influence on the microdefects. The electric field distribution among the samples was unchanged by adding an SiO2 overcoat and undercoat, yet was changed by adding an interlayer. SiO2 undercoat. The interlayer improved the LIDT greatly, whereas the SiO2 overcoat had little effect on the LIDT. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
LaF3 thin films were prepared by thermal boat evaporation at different substrate temperatures and various deposition rates. X-ray diffraction (XRD), Lambda 900 spectrophotometer and X-ray photoelectron spectroscopy (XPS) were employed to study crystal structure, transmittance and chemical composition of the coatings, respectively. Laser-induce damage threshold (LIDT) was determined by a tripled Nd:YAG laser system with a pulse width of 8 ns. It is found that the crystal structure became more perfect and the refractive index increased gradually with the temperature rising. The LIDT was comparatively high at high temperature. In the other hand, the crystallization status also became better and the refractive index increased when the deposition rate enhanced at a low level. If the rate was super rapid, the crystallization worsened instead and the refractive index would lessen greatly. On the whole, the LIDT decreased with increasing rate. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Antireflection coatings at the center wavelength of 1053 nm were prepared on BK7 glasses by electron-beam evaporation deposition (EBD) and ion beam assisted deposition (IBAD). Parts of the two kinds of samples were post-treated with oxygen plasma at the environment temperature after deposition. Absorption at 1064 nm was characterized based on surface thermal lensing (STL) technique. The laser-induced damage threshold (LIDT) was measured by a 1064-nm Nd:YAG laser with a pulse width of 38 ps. Leica-DMRXE Microscope was applied to gain damage morphologies of samples. The results revealed that oxygen post-treatment could lower the absorption and increase the damage thresholds for both kinds of as-grown samples. However, the improving effects are not the same. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Ta2O5 films were deposited using the conventional electron beam evaporation method and then annealed at temperatures in the range 373-673 K. Chemical composition, scattering and absorption were examined by X-ray photoelectron spectroscopy (XPS), total integrated scattering (TIS) measurement and the surface thermal lensing (m) technique, respectively. The laser-induced damage threshold (LIDT) was assessed using the output from an Nd:YAG laser with a pulse length of 12 ns. The results showed that the improvement of the LIDT after annealing was due to the reduced substoichiometric and structural defects present in the film. The LIDT increased slightly below 573K and then increased significantly with increase in annealing temperature, which could be attributed to different dominant defects. Moreover, the root mean square (RMS) roughness and scattering had little effect on the LIDT, while the absorption and the LIDT were in accord with a general relation. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This paper describes a measurement on a GaAs quantum well waveguide with a high built in field across the quantum wells at a wavelength far from the bandedge. The device structure used for the measurement has been fabricated at STC Technology Ltd and is that of a standard laser ridge structure. In fabrication double heterostructure layers are grown on a [001] n + GaAs substrate, with the active region containing two intrinsic GaAs quantum wells of 10nm thickness separated by 10nm. A 4μm wide ridge is etched to provide transverse optical guiding. The experimental work has involved the use of 1.06μm wavelength light from a Q-switched Nd:YAG laser. Any induced change in refractive index is determined by measuring the change in transmission of the quantum well waveguide Fabry-Perot cavity. The waveguide is placed on a Peltier temperature controller to allow thermal tuning.
Resumo:
GaAs absorber was grown at low temperature (550degreesC) by metal organic chemical vapour deposition (MOCVD) and was used as an output coupler with which we realized Q-switching modelocked Yb3+-doped fibre laser. The shortest period of the envelope of the Q-switched modelocking is about 3mus. The modelocking threshold is 4.27W and the highest average output pulse power is 290 mW. The modelocking frequency is 12 MHz.