979 resultados para Data portal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Published work assessing psychosocial stress (job strain) as a risk factor for coronary heart disease is inconsistent and subject to publication bias and reverse causation bias. We analysed the relation between job strain and coronary heart disease with a meta-analysis of published and unpublished studies. METHODS: We used individual records from 13 European cohort studies (1985-2006) of men and women without coronary heart disease who were employed at time of baseline assessment. We measured job strain with questions from validated job-content and demand-control questionnaires. We extracted data in two stages such that acquisition and harmonisation of job strain measure and covariables occurred before linkage to records for coronary heart disease. We defined incident coronary heart disease as the first non-fatal myocardial infarction or coronary death. FINDINGS: 30?214 (15%) of 197?473 participants reported job strain. In 1·49 million person-years at risk (mean follow-up 7·5 years [SD 1·7]), we recorded 2358 events of incident coronary heart disease. After adjustment for sex and age, the hazard ratio for job strain versus no job strain was 1·23 (95% CI 1·10-1·37). This effect estimate was higher in published (1·43, 1·15-1·77) than unpublished (1·16, 1·02-1·32) studies. Hazard ratios were likewise raised in analyses addressing reverse causality by exclusion of events of coronary heart disease that occurred in the first 3 years (1·31, 1·15-1·48) and 5 years (1·30, 1·13-1·50) of follow-up. We noted an association between job strain and coronary heart disease for sex, age groups, socioeconomic strata, and region, and after adjustments for socioeconomic status, and lifestyle and conventional risk factors. The population attributable risk for job strain was 3·4%. INTERPRETATION: Our findings suggest that prevention of workplace stress might decrease disease incidence; however, this strategy would have a much smaller effect than would tackling of standard risk factors, such as smoking. FUNDING: Finnish Work Environment Fund, the Academy of Finland, the Swedish Research Council for Working Life and Social Research, the German Social Accident Insurance, the Danish National Research Centre for the Working Environment, the BUPA Foundation, the Ministry of Social Affairs and Employment, the Medical Research Council, the Wellcome Trust, and the US National Institutes of Health.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A rapidly increasing number of Web databases are now become accessible via
their HTML form-based query interfaces. Query result pages are dynamically generated
in response to user queries, which encode structured data and are displayed for human
use. Query result pages usually contain other types of information in addition to query
results, e.g., advertisements, navigation bar etc. The problem of extracting structured data
from query result pages is critical for web data integration applications, such as comparison
shopping, meta-search engines etc, and has been intensively studied. A number of approaches
have been proposed. As the structures of Web pages become more and more complex, the
existing approaches start to fail, and most of them do not remove irrelevant contents which
may a®ect the accuracy of data record extraction. We propose an automated approach for
Web data extraction. First, it makes use of visual features and query terms to identify data
sections and extracts data records in these sections. We also represent several content and
visual features of visual blocks in a data section, and use them to ¯lter out noisy blocks.
Second, it measures similarity between data items in di®erent data records based on their
visual and content features, and aligns them into di®erent groups so that the data in the
same group have the same semantics. The results of our experiments with a large set of
Web query result pages in di®erent domains show that our proposed approaches are highly
e®ective.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In many environmental valuation applications standard sample sizes for choice modelling surveys are impractical to achieve. One can improve data quality using more in-depth surveys administered to fewer respondents. We report on a study using high quality rank-ordered data elicited with the best-worst approach. The resulting "exploded logit" choice model, estimated on 64 responses per person, was used to study the willingness to pay for external benefits by visitors for policies which maintain the cultural heritage of alpine grazing commons. We find evidence supporting this approach and reasonable estimates of mean WTP, which appear theoretically valid and policy informative. © The Author (2011).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes max separation clustering (MSC), a new non-hierarchical clustering method used for feature extraction from optical emission spectroscopy (OES) data for plasma etch process control applications. OES data is high dimensional and inherently highly redundant with the result that it is difficult if not impossible to recognize useful features and key variables by direct visualization. MSC is developed for clustering variables with distinctive patterns and providing effective pattern representation by a small number of representative variables. The relationship between signal-to-noise ratio (SNR) and clustering performance is highlighted, leading to a requirement that low SNR signals be removed before applying MSC. Experimental results on industrial OES data show that MSC with low SNR signal removal produces effective summarization of the dominant patterns in the data.