936 resultados para limit cycles
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper singularly perturbed vector fields Xε defined in ℝ2 are discussed. The main results use the solutions of the linear partial differential equation XεV = div(Xε)V to give conditions for the existence of limit cycles converging to a singular orbit with respect to the Hausdorff distance. © SPM.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
On the Limit Cycles for a Class of Continuous Piecewise Linear Differential Systems with Three Zones
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We prove that in quadratic perturbations of generic Hamiltonian vector fields with two saddle points and one center there can appear at most two limit cycles. This bound is exact.
Resumo:
MSC 2010: 26A33, 34D05, 37C25
Resumo:
The fixed point implementation of IIR digital filters usually leads to the appearance of zero-input limit cycles, which degrade the performance of the system. In this paper, we develop an efficient Monte Carlo algorithm to detect and characterize limit cycles in fixed-point IIR digital filters. The proposed approach considers filters formulated in the state space and is valid for any fixed point representation and quantization function. Numerical simulations on several high-order filters, where an exhaustive search is unfeasible, show the effectiveness of the proposed approach.
Resumo:
Recent efforts to develop large-scale neural architectures have paid relatively little attention to the use of self-organizing maps (SOMs). Part of the reason is that most conventional SOMs use a static encoding representation: Each input is typically represented by the fixed activation of a single node in the map layer. This not only carries information in an inefficient and unreliable way that impedes building robust multi-SOM neural architectures, but it is also inconsistent with rhythmic oscillations in biological neural networks. Here I develop and study an alternative encoding scheme that instead uses limit cycle attractors of multi-focal activity patterns to represent input patterns/sequences. Such a fundamental change in representation raises several questions: Can this be done effectively and reliably? If so, will map formation still occur? What properties would limit cycle SOMs exhibit? Could multiple such SOMs interact effectively? Could robust architectures based on such SOMs be built for practical applications? The principal results of examining these questions are as follows. First, conditions are established for limit cycle attractors to emerge in a SOM through self-organization when encoding both static and temporal sequence inputs. It is found that under appropriate conditions a set of learned limit cycles are stable, unique, and preserve input relationships. In spite of the continually changing activity in a limit cycle SOM, map formation continues to occur reliably. Next, associations between limit cycles in different SOMs are learned. It is shown that limit cycles in one SOM can be successfully retrieved by another SOM’s limit cycle activity. Control timings can be set quite arbitrarily during both training and activation. Importantly, the learned associations generalize to new inputs that have never been seen during training. Finally, a complete neural architecture based on multiple limit cycle SOMs is presented for robotic arm control. This architecture combines open-loop and closed-loop methods to achieve high accuracy and fast movements through smooth trajectories. The architecture is robust in that disrupting or damaging the system in a variety of ways does not completely destroy the system. I conclude that limit cycle SOMs have great potentials for use in constructing robust neural architectures.
Resumo:
A planar polynomial differential system has a finite number of limit cycles. However, finding the upper bound of the number of limit cycles is an open problem for the general nonlinear dynamical systems. In this paper, we investigated a class of Liénard systems of the form x'=y, y'=f(x)+y g(x) with deg f=5 and deg g=4. We proved that the related elliptic integrals of the Liénard systems have at most three zeros including multiple zeros, which implies that the number of limit cycles bifurcated from the periodic orbits of the unperturbed system is less than or equal to 3.
Resumo:
Higher order spectral analysis is used to investigate nonlinearities in time series of voltages measured from a realization of Chua's circuit. For period-doubled limit cycles, quadratic and cubic nonlinear interactions result in phase coupling and energy exchange between increasing numbers of triads and quartets of Fourier components as the nonlinearity of the system is increased. For circuit parameters that result in a chaotic Rossler-type attractor, bicoherence and tricoherence spectra indicate that both quadratic and cubic nonlinear interactions are important to the dynamics. When the circuit exhibits a double-scroll chaotic attractor the bispectrum is zero, but the tricoherences are high, consistent with the importance of higher-than-second order nonlinear interactions during chaos associated with the double scroll.
Resumo:
Higher-order spectral (bispectral and trispectral) analyses of numerical solutions of the Duffing equation with a cubic stiffness are used to isolate the coupling between the triads and quartets, respectively, of nonlinearly interacting Fourier components of the system. The Duffing oscillator follows a period-doubling intermittency catastrophic route to chaos. For period-doubled limit cycles, higher-order spectra indicate that both quadratic and cubic nonlinear interactions are important to the dynamics. However, when the Duffing oscillator becomes chaotic, global behavior of the cubic nonlinearity becomes dominant and quadratic nonlinear interactions are weak, while cubic interactions remain strong. As the nonlinearity of the system is increased, the number of excited Fourier components increases, eventually leading to broad-band power spectra for chaos. The corresponding higher-order spectra indicate that although some individual nonlinear interactions weaken as nonlinearity increases, the number of nonlinearly interacting Fourier modes increases. Trispectra indicate that the cubic interactions gradually evolve from encompassing a few quartets of Fourier components for period-1 motion to encompassing many quartets for chaos. For chaos, all the components within the energetic part of the power spectrum are cubically (but not quadratically) coupled to each other.