Bifurcation of limit cycles from a centre in R-4 in resonance 1:N
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
20/05/2014
20/05/2014
01/01/2009
|
Resumo |
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Processo FAPESP: 07/04307-2 For every positive integer N >= 2 we consider the linear differential centre (x) over dot = Ax in R-4 with eigenvalues +/- i and +/- Ni. We perturb this linear centre inside the class of all polynomial differential systems of the form linear plus a homogeneous nonlinearity of degree N, i.e. (x) over dot Ax + epsilon F(x) where every component of F(x) is a linear polynomial plus a homogeneous polynomial of degree N. Then if the displacement function of order epsilon of the perturbed system is not identically zero, we study the maximal number of limit cycles that can bifurcate from the periodic orbits of the linear differential centre. |
Formato |
123-137 |
Identificador |
http://dx.doi.org/10.1080/14689360802534492 Dynamical Systems-an International Journal. Abingdon: Taylor & Francis Ltd, v. 24, n. 1, p. 123-137, 2009. 1468-9367 http://hdl.handle.net/11449/40908 10.1080/14689360802534492 WOS:000263644000009 |
Idioma(s) |
eng |
Publicador |
Taylor & Francis Ltd |
Relação |
Dynamical Systems-an International Journal |
Direitos |
closedAccess |
Palavras-Chave | #periodic orbits #limit cycles #polynomial vector fields #perturbation #resonance 1:N |
Tipo |
info:eu-repo/semantics/article |