Limit cycles for singular perturbation problems via inverse integrating factor


Autoria(s): Llibre, Jaume; Medrado, João C.R.; Da Silva, Paulo R.
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

27/05/2014

27/05/2014

01/12/2008

Resumo

In this paper singularly perturbed vector fields Xε defined in ℝ2 are discussed. The main results use the solutions of the linear partial differential equation XεV = div(Xε)V to give conditions for the existence of limit cycles converging to a singular orbit with respect to the Hausdorff distance. © SPM.

Formato

41-52

Identificador

http://dx.doi.org/10.5269/bspm.v26i1-2.7401

Boletim da Sociedade Paranaense de Matematica, v. 26, n. 1-2, p. 41-52, 2008.

0037-8712

2175-1188

http://hdl.handle.net/11449/70752

10.5269/bspm.v26i1-2.7401

2-s2.0-84881363091

2-s2.0-84881363091.pdf

Idioma(s)

eng

Relação

Boletim da Sociedade Paranaense de Matematica

Direitos

openAccess

Palavras-Chave #Inverse integrating facto #Limit cycles #Singular perturbation #Vector fields
Tipo

info:eu-repo/semantics/article