Limit cycles for singular perturbation problems via inverse integrating factor
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
27/05/2014
27/05/2014
01/12/2008
|
Resumo |
In this paper singularly perturbed vector fields Xε defined in ℝ2 are discussed. The main results use the solutions of the linear partial differential equation XεV = div(Xε)V to give conditions for the existence of limit cycles converging to a singular orbit with respect to the Hausdorff distance. © SPM. |
Formato |
41-52 |
Identificador |
http://dx.doi.org/10.5269/bspm.v26i1-2.7401 Boletim da Sociedade Paranaense de Matematica, v. 26, n. 1-2, p. 41-52, 2008. 0037-8712 2175-1188 http://hdl.handle.net/11449/70752 10.5269/bspm.v26i1-2.7401 2-s2.0-84881363091 2-s2.0-84881363091.pdf |
Idioma(s) |
eng |
Relação |
Boletim da Sociedade Paranaense de Matematica |
Direitos |
openAccess |
Palavras-Chave | #Inverse integrating facto #Limit cycles #Singular perturbation #Vector fields |
Tipo |
info:eu-repo/semantics/article |