Birth of limit cycles bifurcating from a nonsmooth center


Autoria(s): Buzzi, Claudio A.; Carvalho, Tiago de; Teixeira, Marco A.
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

03/12/2014

03/12/2014

01/07/2014

Resumo

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Processo FAPESP: 07/06896-5

Processo FAPESP: 12/00481-6

This paper is concerned with a codimension analysis of a two-fold singularity of piecewise smooth planar vector fields, when it behaves itself like a center of smooth vector fields (also called nondegenerate Sigma-center). We prove that any nondegenerate Sigma-center is Sigma-equivalent to a particular normal form Z(0). Given a positive integer number k we explicitly construct families of piecewise smooth vector fields emerging from Z(0) that have k hyperbolic limit cycles bifurcating from the nondegenerate Sigma-center of Z(0) (the same holds for k = infinity). Moreover, we also exhibit families of piecewise smooth vector fields of codimension k emerging from Z(0). As a consequence we prove that Z(0) has infinite codimension. (c) 2013 Elsevier Masson SAS. All rights reserved.

Formato

36-47

Identificador

http://dx.doi.org/10.1016/j.matpur.2013.10.013

Journal De Mathematiques Pures Et Appliquees. Paris: Gauthier-villars/editions Elsevier, v. 102, n. 1, p. 36-47, 2014.

0021-7824

http://hdl.handle.net/11449/111661

10.1016/j.matpur.2013.10.013

WOS:000337850900002

Idioma(s)

eng

Publicador

Elsevier B.V.

Relação

Journal De Mathematiques Pures Et Appliquees

Direitos

closedAccess

Palavras-Chave #Nonsmooth vector field #Bifurcation #Limit cycles #Centers
Tipo

info:eu-repo/semantics/article