Birth of limit cycles bifurcating from a nonsmooth center
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
03/12/2014
03/12/2014
01/07/2014
|
Resumo |
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Processo FAPESP: 07/06896-5 Processo FAPESP: 12/00481-6 This paper is concerned with a codimension analysis of a two-fold singularity of piecewise smooth planar vector fields, when it behaves itself like a center of smooth vector fields (also called nondegenerate Sigma-center). We prove that any nondegenerate Sigma-center is Sigma-equivalent to a particular normal form Z(0). Given a positive integer number k we explicitly construct families of piecewise smooth vector fields emerging from Z(0) that have k hyperbolic limit cycles bifurcating from the nondegenerate Sigma-center of Z(0) (the same holds for k = infinity). Moreover, we also exhibit families of piecewise smooth vector fields of codimension k emerging from Z(0). As a consequence we prove that Z(0) has infinite codimension. (c) 2013 Elsevier Masson SAS. All rights reserved. |
Formato |
36-47 |
Identificador |
http://dx.doi.org/10.1016/j.matpur.2013.10.013 Journal De Mathematiques Pures Et Appliquees. Paris: Gauthier-villars/editions Elsevier, v. 102, n. 1, p. 36-47, 2014. 0021-7824 http://hdl.handle.net/11449/111661 10.1016/j.matpur.2013.10.013 WOS:000337850900002 |
Idioma(s) |
eng |
Publicador |
Elsevier B.V. |
Relação |
Journal De Mathematiques Pures Et Appliquees |
Direitos |
closedAccess |
Palavras-Chave | #Nonsmooth vector field #Bifurcation #Limit cycles #Centers |
Tipo |
info:eu-repo/semantics/article |