881 resultados para business-intelligence-system
Resumo:
Business intelligence (BI) is an information process that includes the activities and applications used to transform business data into valuable business information. Today’s enterprises are collecting detailed data which has increased the available business data drastically. In order to meet changing customer needs and gain competitive advantage businesses try to leverage this information. However, IT departments are struggling to meet the increased amount of reporting needs. Therefore, recent shift in the BI market has been towards empowering business users with self-service BI capabilities. The purpose of this study was to understand how self-service BI could help businesses to meet increased reporting demands. The research problem was approached with an empirical single case study. Qualitative data was gathered with a semi-structured, theme-based interview. The study found out that case company’s BI system was mostly used for group performance reporting. Ad-hoc and business user-driven information needs were mostly fulfilled with self-made tools and manual work. It was felt that necessary business information was not easily available. The concept of self-service BI was perceived to be helpful to meet such reporting needs. However, it was found out that the available data is often too complex for an average user to fully understand. The respondents felt that in order to self-service BI to work, the data has to be simplified and described in a way that it can be understood by the average business user. The results of the study suggest that BI programs struggle in meeting all the information needs of today’s businesses. The concept of self-service BI tries to resolve this problem by allowing users easy self-service access to necessary business information. However, business data is often complex and hard to understand. Self-serviced BI has to overcome this challenge before it can reach its potential benefits.
Resumo:
Business intelligence (BI) is an information process that includes the activities and applications used to transform business data into valuable business information. Today’s enterprises are collecting detailed data which has increased the available business data drastically. In order to meet changing customer needs and gain competitive advantage businesses try to leverage this information. However, IT departments are struggling to meet the increased amount of reporting needs. Therefore, recent shift in the BI market has been towards empowering business users with self-service BI capabilities. The purpose of this study was to understand how self-service BI could help businesses to meet increased reporting demands. The research problem was approached with an empirical single case study. Qualitative data was gathered with a semi-structured, theme-based interview. The study found out that case company’s BI system was mostly used for group performance reporting. Ad-hoc and business user-driven information needs were mostly fulfilled with self-made tools and manual work. It was felt that necessary business information was not easily available. The concept of self-service BI was perceived to be helpful to meet such reporting needs. However, it was found out that the available data is often too complex for an average user to fully understand. The respondents felt that in order to self-service BI to work, the data has to be simplified and described in a way that it can be understood by the average business user. The results of the study suggest that BI programs struggle in meeting all the information needs of today’s businesses. The concept of self-service BI tries to resolve this problem by allowing users easy self-service access to necessary business information. However, business data is often complex and hard to understand. Self-serviced BI has to overcome this challenge before it can reach its potential benefits.
Resumo:
Tässä diplomityössä selvitetään case-tutkimuksena parhaita käytäntöjä Business Intelligence Competency Centerin (BICC) eli liiketoimintatiedonhallinnan osaamiskeskuksen perustamiseen. Työ tehdään LähiTapiolalle, jossa on haasteita BI-alueen hallinnoinnissa kehittämisen hajaantuessa eri yksiköihin ja yhtiöihin. Myös järjestelmäympäristö on moninainen. BICC:llä tavoitellaan parempaa näkyvyyttä liiketoiminnan tarpeisiin ja toisaalta halutaan tehostaa tiedon hyödyntämistä johtamisessa sekä operatiivisen tason työskentelyssä. Tavoitteena on lisäksi saada kustannuksia pienemmäksi yhtenäistämällä järjestelmäympäristöjä ja BI-työkaluja kuten myös toimintamalleja. Työssä tehdään kirjallisuuskatsaus ja haastatellaan asiantuntijoita kolmessa yrityksessä. Tutkimuksen perusteella voidaan todeta, että liiketoiminnan BI-tarpeita kannattaa mahdollistaa eri tasoilla perusraportoinnista Ad-hoc –raportointiin ja edistyneeseen analytiikkaan huomioimalla nämä toimintamalleissa ja järjestelmäarkkitehtuurissa. BICC:n perustamisessa liiketoimintatarpeisiin vastaaminen on etusijalla.
Resumo:
This paper discusses the problems inherent within traditional supply chain management's forecast and inventory management processes arising when tackling demand driven supply chain. A demand driven supply chain management architecture developed by Orchestr8 Ltd., U.K. is described to demonstrate its advantages over traditional supply chain management. Within this architecture, a metrics reporting system is designed by adopting business intelligence technology that supports users for decision making and planning supply activities over supply chain health.
Resumo:
In the last few years, a new generation of Business Intelligence (BI) tools called BI 2.0 has emerged to meet the new and ambitious requirements of business users. BI 2.0 not only introduces brand new topics, but in some cases it re-examines past challenges according to new perspectives depending on the market changes and needs. In this context, the term pervasive BI has gained increasing interest as an innovative and forward-looking perspective. This thesis investigates three different aspects of pervasive BI: personalization, timeliness, and integration. Personalization refers to the capacity of BI tools to customize the query result according to the user who takes advantage of it, facilitating the fruition of BI information by different type of users (e.g., front-line employees, suppliers, customers, or business partners). In this direction, the thesis proposes a model for On-Line Analytical Process (OLAP) query personalization to reduce the query result to the most relevant information for the specific user. Timeliness refers to the timely provision of business information for decision-making. In this direction, this thesis defines a new Data Warehuose (DW) methodology, Four-Wheel-Drive (4WD), that combines traditional development approaches with agile methods; the aim is to accelerate the project development and reduce the software costs, so as to decrease the number of DW project failures and favour the BI tool penetration even in small and medium companies. Integration refers to the ability of BI tools to allow users to access information anywhere it can be found, by using the device they prefer. To this end, this thesis proposes Business Intelligence Network (BIN), a peer-to-peer data warehousing architecture, where a user can formulate an OLAP query on its own system and retrieve relevant information from both its local system and the DWs of the net, preserving its autonomy and independency.
Resumo:
Sustainable development support, balanced scorecard development and business process modeling are viewed from the position of systemology. Extensional, intentional and potential properties of a system are considered as necessary to satisfy functional requirements of a meta-system. The correspondence between extensional, intentional and potential properties of a system and sustainable, unsustainable, crisis and catastrophic states of a system is determined. The inaccessibility cause of the system mission is uncovered. The correspondence between extensional, intentional and potential properties of a system and balanced scorecard perspectives is showed. The IDEF0 function modeling method is checked against balanced scorecard perspectives. The correspondence between balanced scorecard perspectives and IDEF0 notations is considered.
Resumo:
With advances in science and technology, computing and business intelligence (BI) systems are steadily becoming more complex with an increasing variety of heterogeneous software and hardware components. They are thus becoming progressively more difficult to monitor, manage and maintain. Traditional approaches to system management have largely relied on domain experts through a knowledge acquisition process that translates domain knowledge into operating rules and policies. It is widely acknowledged as a cumbersome, labor intensive, and error prone process, besides being difficult to keep up with the rapidly changing environments. In addition, many traditional business systems deliver primarily pre-defined historic metrics for a long-term strategic or mid-term tactical analysis, and lack the necessary flexibility to support evolving metrics or data collection for real-time operational analysis. There is thus a pressing need for automatic and efficient approaches to monitor and manage complex computing and BI systems. To realize the goal of autonomic management and enable self-management capabilities, we propose to mine system historical log data generated by computing and BI systems, and automatically extract actionable patterns from this data. This dissertation focuses on the development of different data mining techniques to extract actionable patterns from various types of log data in computing and BI systems. Four key problems—Log data categorization and event summarization, Leading indicator identification , Pattern prioritization by exploring the link structures , and Tensor model for three-way log data are studied. Case studies and comprehensive experiments on real application scenarios and datasets are conducted to show the effectiveness of our proposed approaches.
Business intelligence em sistemas de apoio à gestão de frotas: Análise de Tecnologias e metodologias
Resumo:
O objecto de estudo desta tese de mestrado surgiu da necessidade de dar resposta a uma proposta para uma solução de business intelligence a pedido de um cliente da empresa onde até à data me encontro a desempenhar funções de analista programador júnior. O projecto consistiu na realização de um sistema de monitorização de eventos e análise de operações, portanto um sistema integrado de gestão de frotas com módulo de business intelligence. Durante o decurso deste projecto foi necessário analisar metodologias de desenvolvimento, aprender novas linguagens, ferramentas, como C#, JasperReport, visual studio, Microsoft SQL Server entre outros. ABSTRACT: Business Intelligence applied to fleet management systems - Technologies and Methodologies Analysis. The object of study of this master's thesis was the necessity of responding to a proposal for a business intelligence solution at the request of a client company where so far I find the duties of junior programmer. The project consisted of a system event monitoring and analysis of operations, so an integrated fleet management with integrated business intelligence. During the course of this project was necessary to analyze development methodologies, learn new languages, tools such as C #, JasperReports, visual studio, Microsoft Sql Server and others.
Resumo:
Actualmente, não existem ferramentas open source de Business Intelligence (BI) para suporte à gestão e análise financeira nas empresas, de acordo com o sistema de normalização contabilística (SNC). As diferentes características de cada negócio, juntamente com os requisitos impostos pelo SNC, tornam complexa a criação de uma Framework financeira genérica, que satisfaça, de forma eficiente, as análises financeiras necessárias à gestão das empresas. O objectivo deste projecto é propor uma framework baseada em OLAP, capaz de dar suporte à gestão contabilística e análise financeira, recorrendo exclusivamente a software open source na sua implementação, especificamente, a plataforma Pentaho. Toda a informação contabilística, obtida através da contabilidade geral, da contabilidade analítica, da gestão orçamental e da análise financeira é armazenada num Data mart. Este Data mart suportará toda a análise financeira, incluindo a análise de desvios orçamentais e de fluxo de capitais, permitindo às empresas ter uma ferramenta de BI, compatível com o SNC, que as ajude na tomada de decisões.
Resumo:
Business Intelligence (BI) is one emergent area of the Decision Support Systems (DSS) discipline. Over the last years, the evolution in this area has been considerable. Similarly, in the last years, there has been a huge growth and consolidation of the Data Mining (DM) field. DM is being used with success in BI systems, but a truly DM integration with BI is lacking. Therefore, a lack of an effective usage of DM in BI can be found in some BI systems. An architecture that pretends to conduct to an effective usage of DM in BI is presented.
Resumo:
Trabalho de Projecto apresentado como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
Vivemos cada vez mais numa era de crescentes avanços tecnológicos em diversas áreas. O que há uns anos atrás era considerado como praticamente impossível, em muitos dos casos, já se tornou realidade. Todos usamos tecnologias como, por exemplo, a Internet, Smartphones e GPSs de uma forma natural. Esta proliferação da tecnologia permitiu tanto ao cidadão comum como a organizações a sua utilização de uma forma cada vez mais criativa e simples de utilizar. Além disso, a cada dia que passa surgem novos negócios e startups, o que demonstra o dinamismo que este crescimento veio trazer para a indústria. A presente dissertação incide sobre duas áreas em forte crescimento: Reconhecimento Facial e Business Intelligence (BI), assim como a respetiva combinação das duas com o objetivo de ser criado um novo módulo para um produto já existente. Tratando-se de duas áreas distintas, é primeiramente feito um estudo sobre cada uma delas. A área de Business Intelligence é vocacionada para organizações e trata da recolha de informação sobre o negócio de determinada empresa, seguindo-se de uma posterior análise. A grande finalidade da área de Business Intelligence é servir como forma de apoio ao processo de tomada de decisão por parte dos analistas e gestores destas organizações. O Reconhecimento Facial, por sua vez, encontra-se mais presente na sociedade. Tendo surgido no passado através da ficção científica, cada vez mais empresas implementam esta tecnologia que tem evoluído ao longo dos anos, chegando mesmo a ser usada pelo consumidor final, como por exemplo em Smartphones. As suas aplicações são, portanto, bastante diversas, desde soluções de segurança até simples entretenimento. Para estas duas áreas será assim feito um estudo com base numa pesquisa de publicações de autores da respetiva área. Desde os cenários de utilização, até aspetos mais específicos de cada uma destas áreas, será assim transmitido este conhecimento para o leitor, o que permitirá uma maior compreensão por parte deste nos aspetos relativos ao desenvolvimento da solução. Com o estudo destas duas áreas efetuado, é então feita uma contextualização do problema em relação à área de atuação da empresa e quais as abordagens possíveis. É também descrito todo o processo de análise e conceção, assim como o próprio desenvolvimento numa vertente mais técnica da solução implementada. Por fim, são apresentados alguns exemplos de resultados obtidos já após a implementação da solução.