949 resultados para Topological maps
Resumo:
In this paper we study when the minimal number of roots of the so-called convenient maps horn two-dimensional CW complexes into closed surfaces is zero We present several necessary and sufficient conditions for such a map to be root free Among these conditions we have the existence of specific fittings for the homomorphism induced by the map on the fundamental groups, existence of the so-called mutation of a specific homomorphism also induced by the map, and existence of particular solutions of specific systems of equations on free groups over specific subgroups
Resumo:
Let f: M -> M be a fiber-preserving map where S -> M -> B is a bundle and S is a closed surface. We study the abelianized obstruction, which is a cohomology class in dimension 2, to deform f to a fixed point free map by a fiber-preserving homotopy. The vanishing of this obstruction is only a necessary condition in order to have such deformation, but in some cases it is sufficient. We describe this obstruction and we prove that the vanishing of this class is equivalent to the existence of solution of a system of equations over a certain group ring with coefficients given by Fox derivatives.
Resumo:
Let M -> B, N -> B be fibrations and f(1), f(2): M -> N be a pair of fibre-preserving maps. Using normal bordism techniques we define an invariant which is an obstruction to deforming the pair f(1), f(2) over B to a coincidence free pair of maps. In the special case where the two fibrations axe the same and one of the maps is the identity, a weak version of our omega-invariant turns out to equal Dold`s fixed point index of fibre-preserving maps. The concepts of Reidemeister classes and Nielsen coincidence classes over B are developed. As an illustration we compute e.g. the minimal number of coincidence components for all homotopy classes of maps between S(1)-bundles over S(1) as well as their Nielsen and Reidemeister numbers.
Resumo:
Let X be a compact Hausdorff space, Y be a connected topological manifold, f : X -> Y be a map between closed manifolds and a is an element of Y. The vanishing of the Nielsen root number N(f; a) implies that f is homotopic to a root free map h, i.e., h similar to f and h(-1) (a) = empty set. In this paper, we prove an equivariant analog of this result for G-maps between G-spaces where G is a finite group. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Let f: M -> M be a fiber-preserving map where S -> M -> B is a bundle and S is a closed surface. We study the abelianized obstruction, which is a cohomology class in dimension 2, to deform f to a fixed point free map by a fiber-preserving homotopy. The vanishing of this obstruction is only a necessary condition in order to have such deformation, but in some cases it is sufficient. We describe this obstruction and we prove that the vanishing of this class is equivalent to the existence of solution of a system of equations over a certain group ring with coefficients given by Fox derivatives.
Resumo:
This paper presents the principal results of a detailed study about the use of the Meaningful Fractal Fuzzy Dimension measure in the problem in determining adequately the topological dimension of output space of a Self-Organizing Map. This fractal measure is conceived by combining the Fractals Theory and Fuzzy Approximate Reasoning. In this work this measure was applied on the dataset in order to obtain a priori knowledge, which is used to support the decision making about the SOM output space design. Several maps were designed with this approach and their evaluations are discussed here.
Resumo:
The Asteraceae, one of the largest families among angiosperms, is chemically characterised by the production of sesquiterpene lactones (SLs). A total of 1,111 SLs, which were extracted from 658 species, 161 genera, 63 subtribes and 15 tribes of Asteraceae, were represented and registered in two dimensions in the SISTEMATX, an in-house software system, and were associated with their botanical sources. The respective 11 block of descriptors: Constitutional, Functional groups, BCUT, Atom-centred, 2D autocorrelations, Topological, Geometrical, RDF, 3D-MoRSE, GETAWAY and WHIM were used as input data to separate the botanical occurrences through self-organising maps. Maps that were generated with each descriptor divided the Asteraceae tribes, with total index values between 66.7% and 83.6%. The analysis of the results shows evident similarities among the Heliantheae, Helenieae and Eupatorieae tribes as well as between the Anthemideae and Inuleae tribes. Those observations are in agreement with systematic classifications that were proposed by Bremer, which use mainly morphological and molecular data, therefore chemical markers partially corroborate with these classifications. The results demonstrate that the atom-centred and RDF descriptors can be used as a tool for taxonomic classification in low hierarchical levels, such as tribes. Descriptors obtained through fragments or by the two-dimensional representation of the SL structures were sufficient to obtain significant results, and better results were not achieved by using descriptors derived from three-dimensional representations of SLs. Such models based on physico-chemical properties can project new design SLs, similar structures from literature or even unreported structures in two-dimensional chemical space. Therefore, the generated SOMs can predict the most probable tribe where a biologically active molecule can be found according Bremer classification.
Resumo:
Robust analysis of vector fields has been established as an important tool for deriving insights from the complex systems these fields model. Traditional analysis and visualization techniques rely primarily on computing streamlines through numerical integration. The inherent numerical errors of such approaches are usually ignored, leading to inconsistencies that cause unreliable visualizations and can ultimately prevent in-depth analysis. We propose a new representation for vector fields on surfaces that replaces numerical integration through triangles with maps from the triangle boundaries to themselves. This representation, called edge maps, permits a concise description of flow behaviors and is equivalent to computing all possible streamlines at a user defined error threshold. Independent of this error streamlines computed using edge maps are guaranteed to be consistent up to floating point precision, enabling the stable extraction of features such as the topological skeleton. Furthermore, our representation explicitly stores spatial and temporal errors which we use to produce more informative visualizations. This work describes the construction of edge maps, the error quantification, and a refinement procedure to adhere to a user defined error bound. Finally, we introduce new visualizations using the additional information provided by edge maps to indicate the uncertainty involved in computing streamlines and topological structures.
Resumo:
We show how to construct a topological Markov map of the interval whose invariant probability measure is the stationary law of a given stochastic chain of infinite order. In particular we characterize the maps corresponding to stochastic chains with memory of variable length. The problem treated here is the converse of the classical construction of the Gibbs formalism for Markov expanding maps of the interval.
Resumo:
The MQN-mapplet is a Java application giving access to the structure of small molecules in large databases via color-coded maps of their chemical space. These maps are projections from a 42-dimensional property space defined by 42 integer value descriptors called molecular quantum numbers (MQN), which count different categories of atoms, bonds, polar groups, and topological features and categorize molecules by size, rigidity, and polarity. Despite its simplicity, MQN-space is relevant to biological activities. The MQN-mapplet allows localization of any molecule on the color-coded images, visualization of the molecules, and identification of analogs as neighbors on the MQN-map or in the original 42-dimensional MQN-space. No query molecule is necessary to start the exploration, which may be particularly attractive for nonchemists. To our knowledge, this type of interactive exploration tool is unprecedented for very large databases such as PubChem and GDB-13 (almost one billion molecules). The application is freely available for download at www.gdb.unibe.ch.
Resumo:
Let $\H^n$ be the Heisenberg group of topological dimension 2n+1 . We prove that if n is odd, the pair of metric spaces $(\H^n, \H^n)$ does not have the Lipschitz extension property.
Resumo:
The Self-OrganizingMap (SOM) is a neural network model that performs an ordered projection of a high dimensional input space in a low-dimensional topological structure. The process in which such mapping is formed is defined by the SOM algorithm, which is a competitive, unsupervised and nonparametric method, since it does not make any assumption about the input data distribution. The feature maps provided by this algorithm have been successfully applied for vector quantization, clustering and high dimensional data visualization processes. However, the initialization of the network topology and the selection of the SOM training parameters are two difficult tasks caused by the unknown distribution of the input signals. A misconfiguration of these parameters can generate a feature map of low-quality, so it is necessary to have some measure of the degree of adaptation of the SOM network to the input data model. The topologypreservation is the most common concept used to implement this measure. Several qualitative and quantitative methods have been proposed for measuring the degree of SOM topologypreservation, particularly using Kohonen's model. In this work, two methods for measuring the topologypreservation of the Growing Cell Structures (GCSs) model are proposed: the topographic function and the topology preserving map
Resumo:
ESAT 2014. 27th European Symposium on Applied Thermodynamics, Eindhoven University of Technology, July 6-9, 2014.
Resumo:
It is shown that the construct of supertopological spaces and continuous maps is topological.
Resumo:
* This paper was supported in part by the Bulgarian Ministry of Education, Science and Technologies under contract MM-506/95.