NIELSEN COINCIDENCE THEORY OF FIBRE-PRESERVING MAPS AND DOLD`S FIXED POINT INDEX
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2009
|
Resumo |
Let M -> B, N -> B be fibrations and f(1), f(2): M -> N be a pair of fibre-preserving maps. Using normal bordism techniques we define an invariant which is an obstruction to deforming the pair f(1), f(2) over B to a coincidence free pair of maps. In the special case where the two fibrations axe the same and one of the maps is the identity, a weak version of our omega-invariant turns out to equal Dold`s fixed point index of fibre-preserving maps. The concepts of Reidemeister classes and Nielsen coincidence classes over B are developed. As an illustration we compute e.g. the minimal number of coincidence components for all homotopy classes of maps between S(1)-bundles over S(1) as well as their Nielsen and Reidemeister numbers. Universidade de São Paulo - Institute de Matematica e Estatistica-USP Universidade de São Paulo - Institute de Matematica e Estatistica-USP DAAD-Capes DAAD Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) DAAD Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) international cooperation program DAAD-Capes |
Identificador |
TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, v.33, n.1, p.85-103, 2009 1230-3429 |
Idioma(s) |
eng |
Publicador |
JULIUSZ SCHAUDER CTR NONLINEAR STUDIES |
Relação |
Topological Methods in Nonlinear Analysis |
Direitos |
restrictedAccess Copyright JULIUSZ SCHAUDER CTR NONLINEAR STUDIES |
Palavras-Chave | #Coincidence #fixed point #map over B #normal bordism #omega-invariant #Nielsen number #Reidemeister class #Dold`s index #fibration #SELF-COINCIDENCE #Mathematics |
Tipo |
article original article publishedVersion |