Chains of Infinite Order, Chains with Memory of Variable Length, and Maps of the Interval


Autoria(s): Collet, Pierre; Galves, Antonio
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

05/11/2013

05/11/2013

2012

Resumo

We show how to construct a topological Markov map of the interval whose invariant probability measure is the stationary law of a given stochastic chain of infinite order. In particular we characterize the maps corresponding to stochastic chains with memory of variable length. The problem treated here is the converse of the classical construction of the Gibbs formalism for Markov expanding maps of the interval.

USP project MaCLinC

USP project MaCLinC

USP/COFECUB project Stochastic systems with interactions of variable range

USP/COFECUB project "Stochastic systems with interactions of variable range"

CNPq

CNPq [476501/2009-1, 305447/2008-4]

Identificador

JOURNAL OF STATISTICAL PHYSICS, NEW YORK, v. 149, n. 1, supl. 4, Part 1-2, pp. 73-85, OCT, 2012

0022-4715

http://www.producao.usp.br/handle/BDPI/41363

10.1007/s10955-012-0579-6

http://dx.doi.org/10.1007/s10955-012-0579-6

Idioma(s)

eng

Publicador

SPRINGER

NEW YORK

Relação

JOURNAL OF STATISTICAL PHYSICS

Direitos

closedAccess

Copyright SPRINGER

Palavras-Chave #TOPOLOGICAL MARKOV MAPS OF THE INTERVAL #CHAINS OF INFINITE ORDER #GIBBS FORMALISM #EQUILIBRIUM STATES #INVARIANT-MEASURES #TRANSFORMATIONS #PHYSICS, MATHEMATICAL
Tipo

article

original article

publishedVersion