Chains of Infinite Order, Chains with Memory of Variable Length, and Maps of the Interval
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
05/11/2013
05/11/2013
2012
|
Resumo |
We show how to construct a topological Markov map of the interval whose invariant probability measure is the stationary law of a given stochastic chain of infinite order. In particular we characterize the maps corresponding to stochastic chains with memory of variable length. The problem treated here is the converse of the classical construction of the Gibbs formalism for Markov expanding maps of the interval. USP project MaCLinC USP project MaCLinC USP/COFECUB project Stochastic systems with interactions of variable range USP/COFECUB project "Stochastic systems with interactions of variable range" CNPq CNPq [476501/2009-1, 305447/2008-4] |
Identificador |
JOURNAL OF STATISTICAL PHYSICS, NEW YORK, v. 149, n. 1, supl. 4, Part 1-2, pp. 73-85, OCT, 2012 0022-4715 http://www.producao.usp.br/handle/BDPI/41363 10.1007/s10955-012-0579-6 |
Idioma(s) |
eng |
Publicador |
SPRINGER NEW YORK |
Relação |
JOURNAL OF STATISTICAL PHYSICS |
Direitos |
closedAccess Copyright SPRINGER |
Palavras-Chave | #TOPOLOGICAL MARKOV MAPS OF THE INTERVAL #CHAINS OF INFINITE ORDER #GIBBS FORMALISM #EQUILIBRIUM STATES #INVARIANT-MEASURES #TRANSFORMATIONS #PHYSICS, MATHEMATICAL |
Tipo |
article original article publishedVersion |