Equivariant Nielsen root theory for G-maps
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2010
|
Resumo |
Let X be a compact Hausdorff space, Y be a connected topological manifold, f : X -> Y be a map between closed manifolds and a is an element of Y. The vanishing of the Nielsen root number N(f; a) implies that f is homotopic to a root free map h, i.e., h similar to f and h(-1) (a) = empty set. In this paper, we prove an equivariant analog of this result for G-maps between G-spaces where G is a finite group. (C) 2010 Elsevier B.V. All rights reserved. NSF N.S.F.[DMS 0805968] |
Identificador |
TOPOLOGY AND ITS APPLICATIONS, v.157, n.10/Nov, Special Issue, p.1839-1848, 2010 0166-8641 http://producao.usp.br/handle/BDPI/30776 10.1016/j.topol.2010.02.028 |
Idioma(s) |
eng |
Publicador |
ELSEVIER SCIENCE BV |
Relação |
Topology and Its Applications |
Direitos |
restrictedAccess Copyright ELSEVIER SCIENCE BV |
Palavras-Chave | #Nielsen number #Reidemeister number #Wecken property #Equivariant Nielsen theory #Roots #FIXED-POINT THEORY #HOMOGENEOUS SPACES #NUMBERS #Mathematics, Applied #Mathematics |
Tipo |
article original article publishedVersion |