942 resultados para Regular operators, basic elementary operators, Banach lattices
Resumo:
In this paper we prove a formula for the analytic index of a basic Dirac-type operator on a Riemannian foliation, solving a problem that has been open for many years. We also consider more general indices given by twisting the basic Dirac operator by a representation of the orthogonal group. The formula is a sum of integrals over blowups of the strata of the foliation and also involves eta invariants of associated elliptic operators. As a special case, a Gauss-Bonnet formula for the basic Euler characteristic is obtained using two independent proofs.
Resumo:
Department of Mathematics, Cochin University of Science and Technology
Resumo:
We classify up to isomorphism the spaces of compact operators K(E, F), where E and F are Banach spaces of all continuous functions defined on the compact spaces 2(m) circle plus [0, alpha], the topological sum of Cantor cubes 2(m) and the intervals of ordinal numbers [0, alpha]. More precisely, we prove that if 2(m) and aleph(gamma) are not real-valued measurable cardinals and n >= aleph(0) is not sequential cardinal, then for every ordinals xi, eta, lambda and mu with xi >= omega(1), eta >= omega(1), lambda = mu < omega or lambda, mu is an element of [omega(gamma), omega(gamma+1)[, the following statements are equivalent: (a) K(C(2(m) circle plus [0, lambda]), C(2(n) circle plus [0, xi])) and K(C(2(m) circle plus [0, mu]), C(2(n) circle plus [0, eta]) are isomorphic. (b) Either C([0, xi]) is isomorphic to C([0, eta] or C([0, xi]) is isomorphic to C([0, alpha p]) and C([0, eta]) is isomorphic to C([0,alpha q]) for some regular cardinal alpha and finite ordinals p not equal q. Thus, it is relatively consistent with ZFC that this result furnishes a complete isomorphic classification of these spaces of compact operators. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The play operator has a fundamental importance in the theory of hysteresis. It was studied in various settings as shown by P. Krejci and Ph. Laurencot in 2002. In that work it was considered the Young integral in the frame of Hilbert spaces. Here we study the play in the frame of the regulated functions (that is: the ones having only discontinuities of the first kind) on a general time scale T (that is: with T being a nonempty closed set of real numbers) with values in a Banach space. We will be showing that the dual space in this case will be defined as the space of operators of bounded semivariation if we consider as the bilinearity pairing the Cauchy-Stieltjes integral on time scales.
Resumo:
Let vv be a weight sequence on ZZ and let ψ,φψ,φ be complex-valued functions on ZZ such that φ(Z)⊂Zφ(Z)⊂Z. In this paper we study the boundedness, compactness and weak compactness of weighted composition operators Cψ,φCψ,φ on predual Banach spaces c0(Z,1/v)c0(Z,1/v) and dual Banach spaces ℓ∞(Z,1/v)ℓ∞(Z,1/v) of Beurling algebras ℓ1(Z,v)ℓ1(Z,v).
Resumo:
2000 Mathematics Subject Classification: Primary 46E15, 54C55; Secondary 28B20.
Resumo:
2002 Mathematics Subject Classification: 35L15, 35L80, 35S05, 35S30
Resumo:
AMS Subject Classification 2010: 41A25, 41A35, 41A40, 41A63, 41A65, 42A38, 42A85, 42B10, 42B20
Resumo:
2000 Mathematics Subject Classification: Primary 47A48, 93B28, 47A65; Secondary 34C94.
Resumo:
AMS Subject Classification 2010: 41A25, 41A27, 41A35, 41A36, 41A40, 42Al6, 42A85.
Resumo:
Let A be a unital dense algebra of linear mappings on a complex vector space X. Let φ = Σn i=1 Mai,bi be a locally quasi-nilpotent elementary operator of length n on A. We show that, if {a1, . . . , an} is locally linearly independent, then the local dimension of V (φ) = span{biaj : 1 ≤ i, j ≤ n} is at most n(n−1) 2 . If ldim V (φ) = n(n−1) 2 , then there exists a representation of φ as φ = Σn i=1 Mui,vi with viuj = 0 for i ≥ j. Moreover, we give a complete characterization of locally quasinilpotent elementary operators of length 3.
Resumo:
Given a separable unital C*-algebra C with norm parallel to center dot parallel to, let E-n denote the Banach-space completion of the C-valued Schwartz space on R-n with norm parallel to f parallel to(2)=parallel to < f, f >parallel to(1/2), < f, g >=integral f(x)* g(x)dx. The assignment of the pseudodifferential operator A=a(x,D) with C-valued symbol a(x,xi) to each smooth function with bounded derivatives a is an element of B-C(R-2n) defines an injective mapping O, from B-C(R-2n) to the set H of all operators with smooth orbit under the canonical action of the Heisenberg group on the algebra of all adjointable operators on the Hilbert module E-n. In this paper, we construct a left-inverse S for O and prove that S is injective if C is commutative. This generalizes Cordes' description of H in the scalar case. Combined with previous results of the second author, our main theorem implies that, given a skew-symmetric n x n matrix J and if C is commutative, then any A is an element of H which commutes with every pseudodifferential operator with symbol F(x+J xi), F is an element of B-C(R-n), is a pseudodifferential operator with symbol G(x - J xi), for some G is an element of B-C(R-n). That was conjectured by Rieffel.
Resumo:
Some results are obtained for non-compact cases in topological vector spaces for the existence problem of solutions for some set-valued variational inequalities with quasi-monotone and lower hemi-continuous operators, and with quasi-semi-monotone and upper hemi-continuous operators. Some applications are given in non-reflexive Banach spaces for these existence problems of solutions and for perturbation problems for these set-valued variational inequalities with quasi-monotone and quasi-semi-monotone operators.