912 resultados para Lagrange multiplier principle


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We develop an online actor-critic reinforcement learning algorithm with function approximation for a problem of control under inequality constraints. We consider the long-run average cost Markov decision process (MDP) framework in which both the objective and the constraint functions are suitable policy-dependent long-run averages of certain sample path functions. The Lagrange multiplier method is used to handle the inequality constraints. We prove the asymptotic almost sure convergence of our algorithm to a locally optimal solution. We also provide the results of numerical experiments on a problem of routing in a multi-stage queueing network with constraints on long-run average queue lengths. We observe that our algorithm exhibits good performance on this setting and converges to a feasible point.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study the tradeoff between the average error probability and the average queueing delay of messages which randomly arrive to the transmitter of a point-to-point discrete memoryless channel that uses variable rate fixed codeword length random coding. Bounds to the exponential decay rate of the average error probability with average queueing delay in the regime of large average delay are obtained. Upper and lower bounds to the optimal average delay for a given average error probability constraint are presented. We then formulate a constrained Markov decision problem for characterizing the rate of transmission as a function of queue size given an average error probability constraint. Using a Lagrange multiplier the constrained Markov decision problem is then converted to a problem of minimizing the average cost for a Markov decision problem. A simple heuristic policy is proposed which approximately achieves the optimal average cost.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a novel multi-timescale Q-learning algorithm for average cost control in a Markov decision process subject to multiple inequality constraints. We formulate a relaxed version of this problem through the Lagrange multiplier method. Our algorithm is different from Q-learning in that it updates two parameters - a Q-value parameter and a policy parameter. The Q-value parameter is updated on a slower time scale as compared to the policy parameter. Whereas Q-learning with function approximation can diverge in some cases, our algorithm is seen to be convergent as a result of the aforementioned timescale separation. We show the results of experiments on a problem of constrained routing in a multistage queueing network. Our algorithm is seen to exhibit good performance and the various inequality constraints are seen to be satisfied upon convergence of the algorithm.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this article, we derive an a posteriori error estimator for various discontinuous Galerkin (DG) methods that are proposed in (Wang, Han and Cheng, SIAM J. Numer. Anal., 48: 708-733, 2010) for an elliptic obstacle problem. Using a key property of DG methods, we perform the analysis in a general framework. The error estimator we have obtained for DG methods is comparable with the estimator for the conforming Galerkin (CG) finite element method. In the analysis, we construct a non-linear smoothing function mapping DG finite element space to CG finite element space and use it as a key tool. The error estimator consists of a discrete Lagrange multiplier associated with the obstacle constraint. It is shown for non-over-penalized DG methods that the discrete Lagrange multiplier is uniformly stable on non-uniform meshes. Finally, numerical results demonstrating the performance of the error estimator are presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new generalized model predictive static programming technique is presented for rapidly solving a class of finite-horizon nonlinear optimal control problems with hard terminal constraints. Two key features for its high computational efficiency include one-time backward integration of a small-dimensional weighting matrix dynamics, followed bya static optimization formulation that requires only a static Lagrange multiplier to update the control history. It turns out that under Euler integration and rectangular approximation of finite integrals it is equivalent to the existing model predictive static programming technique. In addition to the benchmark double integrator problem, usefulness of the proposed technique is demonstrated by solving a three-dimensional angle-constrained guidance problem for an air-to-ground missile, which demands that the missile must meet constraints on both azimuth and elevation angles at the impact point in addition to achieving near-zero miss distance, while minimizing the lateral acceleration demand throughout its flight path. Simulation studies include maneuvering ground targets along with a first-order autopilot lag. Comparison studies with classical augmented proportional navigation guidance and modern general explicit guidance lead to the conclusion that the proposed guidance is superior to both and has a larger capture region as well.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A residual based a posteriori error estimator is derived for a quadratic finite element method (FEM) for the elliptic obstacle problem. The error estimator involves various residuals consisting of the data of the problem, discrete solution and a Lagrange multiplier related to the obstacle constraint. The choice of the discrete Lagrange multiplier yields an error estimator that is comparable with the error estimator in the case of linear FEM. Further, an a priori error estimate is derived to show that the discrete Lagrange multiplier converges at the same rate as that of the discrete solution of the obstacle problem. The numerical experiments of adaptive FEM show optimal order convergence. This demonstrates that the quadratic FEM for obstacle problem exhibits optimal performance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we introduce four scenario Cluster based Lagrangian Decomposition (CLD) procedures for obtaining strong lower bounds to the (optimal) solution value of two-stage stochastic mixed 0-1 problems. At each iteration of the Lagrangian based procedures, the traditional aim consists of obtaining the solution value of the corresponding Lagrangian dual via solving scenario submodels once the nonanticipativity constraints have been dualized. Instead of considering a splitting variable representation over the set of scenarios, we propose to decompose the model into a set of scenario clusters. We compare the computational performance of the four Lagrange multiplier updating procedures, namely the Subgradient Method, the Volume Algorithm, the Progressive Hedging Algorithm and the Dynamic Constrained Cutting Plane scheme for different numbers of scenario clusters and different dimensions of the original problem. Our computational experience shows that the CLD bound and its computational effort depend on the number of scenario clusters to consider. In any case, our results show that the CLD procedures outperform the traditional LD scheme for single scenarios both in the quality of the bounds and computational effort. All the procedures have been implemented in a C++ experimental code. A broad computational experience is reported on a test of randomly generated instances by using the MIP solvers COIN-OR and CPLEX for the auxiliary mixed 0-1 cluster submodels, this last solver within the open source engine COIN-OR. We also give computational evidence of the model tightening effect that the preprocessing techniques, cut generation and appending and parallel computing tools have in stochastic integer optimization. Finally, we have observed that the plain use of both solvers does not provide the optimal solution of the instances included in the testbed with which we have experimented but for two toy instances in affordable elapsed time. On the other hand the proposed procedures provide strong lower bounds (or the same solution value) in a considerably shorter elapsed time for the quasi-optimal solution obtained by other means for the original stochastic problem.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Apesar da crescente prevalência da obesidade em países desenvolvidos e em desenvolvimento, há pouca evidência da associação com fatores ambientais. Objetivos: Investigar a evolução temporal do IMC em jovens alistados do sexo masculino de 18 anos no Brasil entre 1980 e 2005; identificar pontos específicos de maior variância na série temporal e comparar pontos específicos no tempo, a evolução temporal do IMC com as mudanças socioeconômicas no Brasil. Métodos: O presente estudo explorou uma série temporal de 26 anos em homens brasileiros que se alistaram no período de 1980 a 2005. A amostra compreendeu cerca de 35-40% de todos os jovens brasileiros de 18 anos de idade. O peso corporal e a estatura foram obtidos no momento do exame médico durante o alistamento militar. Todas as mensurações antropométricas foram realizadas por pessoal especializado e treinado. As prevalências do sobrepeso e da obesidade foram calculadas com intervalos de confiança de 95%. Com a finalidade de testar a presença de heterocedasticidade na série do IMC, realizou-se o teste de Multiplicador de Lagrange (LM). Para os pontos no tempo, com oscilações acima da média do IMC, variáveis dummies foram testadas utilizando-se o modelo ARCH (Autoregressivo de Heterocedasticidade Condicionada), com um nível de significância de p <0,05. Para aqueles pontos no tempo com oscilações acima da média do IMC (anos de 1985, 1994 e 2000), variáveis dummy foram incluídos sob a hipótese foi de que a taxa de crescimento do IMC não fosse a mesma ao longo da série temporal. Para as possíveis explicações para os aumentos bruscos na curva do IMC, foram consideradas as alterações nos principais indicadores econômicos do Brasil (Instituto Brasileiro de Geografia e Estatística e Instituto de Pesquisa Econômica Aplicada). Os fatores econômicos analisados foram: taxa de inflação anual, produção de alimentos, pobreza (%), o consumo de refrigerantes e o rendimento médio anual. Resultados: A prevalência de sobrepeso também passou de 4,5%, em 1980, para 12,5%, em 2005, um aumento de 2,6 vezes, enquanto a prevalência de obesidade aumentou de 0,5%, em 1980, para 1,9%, em 2005, um aumento de quase 300%, mas por comparação internacional estão abaixo da média. Particularmente em 1985-6 e 1994-5, houve um aumento acentuado e significativo do IMC. Em 1985-6, a média do IMC aumentou de 21,4 kg/m2 para 21,5 kg/m2 e, em 1994-5, a média do IMC médio aumentou de 21,7 kg/m2 para 21,9 kg/m2. Nesses dois pontos (1985-1986 e 1994-1995) ocorreram logo após duas grandes mudanças políticas econômicas que aumentaram o poder de compra da população. Em 1985-6, as mudanças foram principalmente relacionadas a fatores econômicos, tais como: a redução do nível de desigualdade social; aumento da renda familiar; redução da pobreza; o controle da inflação; aumento do tempo assistindo televisão e aumento do consumo de alimentos. Em 1994-5, além das mudanças no poder de compra, houve uma modificação na atividade física obrigatória nas escolas. Conclusão: O presente estudo mostrou um aumento abrupto da obesidade na população de homens jovens no Brasil em duas ocasiões durante esta série temporal (anos de 1985-6 e 1994-5), quando uma possível redução no gasto calórico e aumento do consumo de alimentos da população foram observados.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A hybrid method for the incompressible Navier-Stokes equations is presented. The method inherits the attractive stabilizing mechanism of upwinded discontinuous Galerkin methods when momentum advection becomes significant, equal-order interpolations can be used for the velocity and pressure fields, and mass can be conserved locally. Using continuous Lagrange multiplier spaces to enforce flux continuity across cell facets, the number of global degrees of freedom is the same as for a continuous Galerkin method on the same mesh. Different from our earlier investigations on the approach for the Navier-Stokes equations, the pressure field in this work is discontinuous across cell boundaries. It is shown that this leads to very good local mass conservation and, for an appropriate choice of finite element spaces, momentum conservation. Also, a new form of the momentum transport terms for the method is constructed such that global energy stability is guaranteed, even in the absence of a pointwise solenoidal velocity field. Mass conservation, momentum conservation, and global energy stability are proved for the time-continuous case and for a fully discrete scheme. The presented analysis results are supported by a range of numerical simulations. © 2012 Society for Industrial and Applied Mathematics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We give a generalized Lagrangian density of 1 + 1 Dimensional O( 3) nonlinear sigma model with subsidiary constraints, different Lagrange multiplier fields and topological term, find a lost intrinsic constraint condition, convert the subsidiary constraints into inner constraints in the nonlinear sigma model, give the example of not introducing the lost constraint. N = 0, by comparing the example with the case of introducing the lost constraint, we obtain that when not introducing the lost constraint, one has to obtain a lot of various non-intrinsic constraints. We further deduce the gauge generator, give general BRST transformation of the model under the general conditions. It is discovered that there exists a gauge parameter beta originating from the freedom degree of BRST transformation in a general O( 3) nonlinear sigma model, and we gain the general commutation relations of ghost field.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

变分数据同化中的伴随法可实现数值模型与观测数据的拟合。随着物理海洋数值计算和数值预报业务的不断发展,其具有广阔的应用前景。本文主要研究关于伴随数据同化的有关理论及其在物理海洋数值模型中的应用。本文介绍了变分伴随数据同化的基本原理,从模型方程的连续和离散形式出发讨论采用两种不同的方法推导伴随方程,一是拉格朗日乘子(Lagrange multiplier)法;二是基于泛函的Gateaux微分概念的方法,这里简称Gateaux微分法。文中讨论了导出离散伴随模型方程和目标函数梯度的两种不同途径,其中一种途径是由连续的正模型得到连续的伴随模型及连续的目标函数梯度表达式,然后再对伴随模型和目标函数梯度进行差分离散(简称“伴随的差分”);另外一种途径是由离散的正模型直接导出离散的伴随模型及梯度表达式(简称“差分的伴随”)。目前尽管人们比较一致的看法是应该采用后一种途径,即建立伴随模型系统应该采用“差分的伴随”,但对由这两种途径建立的伴随系统的相互关系,人们探讨的并不多。本文利用了简单的模型对该问题进行了研究。另外,对有关初始猜测和伴随优化系统的多解性问题进行了探讨。本文着重研究并实现了利用伴随法优化非线性潮汐模型的开边界条件。其中采用的二维非线性浅水模型既考虑非线性底磨擦和侧向粘性涡动混合,又包括非线性平流项;离散伴随模型的建立是基于ADI格式(不受CFL条件限制),改善了变分伴随数据同化过程中计算量和计算存储问题,使之减小若干倍(约5~7倍),从而使得模式适于业务化的需求,具有实用价值;同化过程中使用的观测数据既包括常规验潮站水位观测资料,又包括TOPEX/POSEIDON卫星测高数据。实测数据同化数值试验表明,开边界条件的最优控制对数值计算结果有一定程度的改进。本文还探讨了将伴随法应用于海表面温度(SST)的数值预报中。其中采用的SST数值预报模型是基于国家“七五”期间科技攻关项目《中国近海海表面温度短期数值预报模式》。文中利用船舶报SST观测数据进行伴随数据同化试验,以优化初始场,其结果是比较满意的,表明变分数据同化对改进SST数值预报的效果是比较明显的,将伴随法引入中国海域SST数值预报业务化中是可行的。本文最后讨论了伴随数据同化中尚待深入研究的问题,着重指出了在物理海洋学领域开展二阶伴随模式应用研究的内容和必要性。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The shifted Legendre orthogonal polynomials are used for the numerical solution of a new formulation for the multi-dimensional fractional optimal control problem (M-DFOCP) with a quadratic performance index. The fractional derivatives are described in the Caputo sense. The Lagrange multiplier method for the constrained extremum and the operational matrix of fractional integrals are used together with the help of the properties of the shifted Legendre orthonormal polynomials. The method reduces the M-DFOCP to a simpler problem that consists of solving a system of algebraic equations. For confirming the efficiency and accuracy of the proposed scheme, some test problems are implemented with their approximate solutions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent work shows that a low correlation between the instruments and the included variables leads to serious inference problems. We extend the local-to-zero analysis of models with weak instruments to models with estimated instruments and regressors and with higher-order dependence between instruments and disturbances. This makes this framework applicable to linear models with expectation variables that are estimated non-parametrically. Two examples of such models are the risk-return trade-off in finance and the impact of inflation uncertainty on real economic activity. Results show that inference based on Lagrange Multiplier (LM) tests is more robust to weak instruments than Wald-based inference. Using LM confidence intervals leads us to conclude that no statistically significant risk premium is present in returns on the S&P 500 index, excess holding yields between 6-month and 3-month Treasury bills, or in yen-dollar spot returns.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper : a) the consumer’s problem is studied over two periods, the second one involving S states, and the consumer being endowed with S+1 incomes and having access to N financial assets; b) the consumer is then representable by a continuously differentiable system of demands, commodity demands, asset demands and desirabilities of incomes (the S+1 Lagrange multiplier of the S+1 constraints); c) the multipliers can be transformed into subjective Arrow prices; d) the effects of the various incomes on these Arrow prices decompose into a compensation effect (an Antonelli matrix) and a wealth effect; e) the Antonelli matrix has rank S-N, the dimension of incompleteness, if the consumer can financially adjust himself when facing income shocks; f) the matrix has rank S, if not; g) in the first case, the matrix represents a residual aversion; in the second case, a fundamental aversion; the difference between them is an aversion to illiquidity; this last relation corresponds to the Drèze-Modigliani decomposition (1972); h) the fundamental aversion decomposes also into an aversion to impatience and a risk aversion; i) the above decompositions span a third decomposition; if there exists a sure asset (to be defined, the usual definition being too specific), the fundamental aversion admits a three-component decomposition, an aversion to impatience, a residual aversion and an aversion to the illiquidity of risky assets; j) the formulas of the corresponding financial premiums are also presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La dernière décennie a connu un intérêt croissant pour les problèmes posés par les variables instrumentales faibles dans la littérature économétrique, c’est-à-dire les situations où les variables instrumentales sont faiblement corrélées avec la variable à instrumenter. En effet, il est bien connu que lorsque les instruments sont faibles, les distributions des statistiques de Student, de Wald, du ratio de vraisemblance et du multiplicateur de Lagrange ne sont plus standard et dépendent souvent de paramètres de nuisance. Plusieurs études empiriques portant notamment sur les modèles de rendements à l’éducation [Angrist et Krueger (1991, 1995), Angrist et al. (1999), Bound et al. (1995), Dufour et Taamouti (2007)] et d’évaluation des actifs financiers (C-CAPM) [Hansen et Singleton (1982,1983), Stock et Wright (2000)], où les variables instrumentales sont faiblement corrélées avec la variable à instrumenter, ont montré que l’utilisation de ces statistiques conduit souvent à des résultats peu fiables. Un remède à ce problème est l’utilisation de tests robustes à l’identification [Anderson et Rubin (1949), Moreira (2002), Kleibergen (2003), Dufour et Taamouti (2007)]. Cependant, il n’existe aucune littérature économétrique sur la qualité des procédures robustes à l’identification lorsque les instruments disponibles sont endogènes ou à la fois endogènes et faibles. Cela soulève la question de savoir ce qui arrive aux procédures d’inférence robustes à l’identification lorsque certaines variables instrumentales supposées exogènes ne le sont pas effectivement. Plus précisément, qu’arrive-t-il si une variable instrumentale invalide est ajoutée à un ensemble d’instruments valides? Ces procédures se comportent-elles différemment? Et si l’endogénéité des variables instrumentales pose des difficultés majeures à l’inférence statistique, peut-on proposer des procédures de tests qui sélectionnent les instruments lorsqu’ils sont à la fois forts et valides? Est-il possible de proposer les proédures de sélection d’instruments qui demeurent valides même en présence d’identification faible? Cette thèse se focalise sur les modèles structurels (modèles à équations simultanées) et apporte des réponses à ces questions à travers quatre essais. Le premier essai est publié dans Journal of Statistical Planning and Inference 138 (2008) 2649 – 2661. Dans cet essai, nous analysons les effets de l’endogénéité des instruments sur deux statistiques de test robustes à l’identification: la statistique d’Anderson et Rubin (AR, 1949) et la statistique de Kleibergen (K, 2003), avec ou sans instruments faibles. D’abord, lorsque le paramètre qui contrôle l’endogénéité des instruments est fixe (ne dépend pas de la taille de l’échantillon), nous montrons que toutes ces procédures sont en général convergentes contre la présence d’instruments invalides (c’est-à-dire détectent la présence d’instruments invalides) indépendamment de leur qualité (forts ou faibles). Nous décrivons aussi des cas où cette convergence peut ne pas tenir, mais la distribution asymptotique est modifiée d’une manière qui pourrait conduire à des distorsions de niveau même pour de grands échantillons. Ceci inclut, en particulier, les cas où l’estimateur des double moindres carrés demeure convergent, mais les tests sont asymptotiquement invalides. Ensuite, lorsque les instruments sont localement exogènes (c’est-à-dire le paramètre d’endogénéité converge vers zéro lorsque la taille de l’échantillon augmente), nous montrons que ces tests convergent vers des distributions chi-carré non centrées, que les instruments soient forts ou faibles. Nous caractérisons aussi les situations où le paramètre de non centralité est nul et la distribution asymptotique des statistiques demeure la même que dans le cas des instruments valides (malgré la présence des instruments invalides). Le deuxième essai étudie l’impact des instruments faibles sur les tests de spécification du type Durbin-Wu-Hausman (DWH) ainsi que le test de Revankar et Hartley (1973). Nous proposons une analyse en petit et grand échantillon de la distribution de ces tests sous l’hypothèse nulle (niveau) et l’alternative (puissance), incluant les cas où l’identification est déficiente ou faible (instruments faibles). Notre analyse en petit échantillon founit plusieurs perspectives ainsi que des extensions des précédentes procédures. En effet, la caractérisation de la distribution de ces statistiques en petit échantillon permet la construction des tests de Monte Carlo exacts pour l’exogénéité même avec les erreurs non Gaussiens. Nous montrons que ces tests sont typiquement robustes aux intruments faibles (le niveau est contrôlé). De plus, nous fournissons une caractérisation de la puissance des tests, qui exhibe clairement les facteurs qui déterminent la puissance. Nous montrons que les tests n’ont pas de puissance lorsque tous les instruments sont faibles [similaire à Guggenberger(2008)]. Cependant, la puissance existe tant qu’au moins un seul instruments est fort. La conclusion de Guggenberger (2008) concerne le cas où tous les instruments sont faibles (un cas d’intérêt mineur en pratique). Notre théorie asymptotique sous les hypothèses affaiblies confirme la théorie en échantillon fini. Par ailleurs, nous présentons une analyse de Monte Carlo indiquant que: (1) l’estimateur des moindres carrés ordinaires est plus efficace que celui des doubles moindres carrés lorsque les instruments sont faibles et l’endogenéité modérée [conclusion similaire à celle de Kiviet and Niemczyk (2007)]; (2) les estimateurs pré-test basés sur les tests d’exogenété ont une excellente performance par rapport aux doubles moindres carrés. Ceci suggère que la méthode des variables instrumentales ne devrait être appliquée que si l’on a la certitude d’avoir des instruments forts. Donc, les conclusions de Guggenberger (2008) sont mitigées et pourraient être trompeuses. Nous illustrons nos résultats théoriques à travers des expériences de simulation et deux applications empiriques: la relation entre le taux d’ouverture et la croissance économique et le problème bien connu du rendement à l’éducation. Le troisième essai étend le test d’exogénéité du type Wald proposé par Dufour (1987) aux cas où les erreurs de la régression ont une distribution non-normale. Nous proposons une nouvelle version du précédent test qui est valide même en présence d’erreurs non-Gaussiens. Contrairement aux procédures de test d’exogénéité usuelles (tests de Durbin-Wu-Hausman et de Rvankar- Hartley), le test de Wald permet de résoudre un problème courant dans les travaux empiriques qui consiste à tester l’exogénéité partielle d’un sous ensemble de variables. Nous proposons deux nouveaux estimateurs pré-test basés sur le test de Wald qui performent mieux (en terme d’erreur quadratique moyenne) que l’estimateur IV usuel lorsque les variables instrumentales sont faibles et l’endogénéité modérée. Nous montrons également que ce test peut servir de procédure de sélection de variables instrumentales. Nous illustrons les résultats théoriques par deux applications empiriques: le modèle bien connu d’équation du salaire [Angist et Krueger (1991, 1999)] et les rendements d’échelle [Nerlove (1963)]. Nos résultats suggèrent que l’éducation de la mère expliquerait le décrochage de son fils, que l’output est une variable endogène dans l’estimation du coût de la firme et que le prix du fuel en est un instrument valide pour l’output. Le quatrième essai résout deux problèmes très importants dans la littérature économétrique. D’abord, bien que le test de Wald initial ou étendu permette de construire les régions de confiance et de tester les restrictions linéaires sur les covariances, il suppose que les paramètres du modèle sont identifiés. Lorsque l’identification est faible (instruments faiblement corrélés avec la variable à instrumenter), ce test n’est en général plus valide. Cet essai développe une procédure d’inférence robuste à l’identification (instruments faibles) qui permet de construire des régions de confiance pour la matrices de covariances entre les erreurs de la régression et les variables explicatives (possiblement endogènes). Nous fournissons les expressions analytiques des régions de confiance et caractérisons les conditions nécessaires et suffisantes sous lesquelles ils sont bornés. La procédure proposée demeure valide même pour de petits échantillons et elle est aussi asymptotiquement robuste à l’hétéroscédasticité et l’autocorrélation des erreurs. Ensuite, les résultats sont utilisés pour développer les tests d’exogénéité partielle robustes à l’identification. Les simulations Monte Carlo indiquent que ces tests contrôlent le niveau et ont de la puissance même si les instruments sont faibles. Ceci nous permet de proposer une procédure valide de sélection de variables instrumentales même s’il y a un problème d’identification. La procédure de sélection des instruments est basée sur deux nouveaux estimateurs pré-test qui combinent l’estimateur IV usuel et les estimateurs IV partiels. Nos simulations montrent que: (1) tout comme l’estimateur des moindres carrés ordinaires, les estimateurs IV partiels sont plus efficaces que l’estimateur IV usuel lorsque les instruments sont faibles et l’endogénéité modérée; (2) les estimateurs pré-test ont globalement une excellente performance comparés à l’estimateur IV usuel. Nous illustrons nos résultats théoriques par deux applications empiriques: la relation entre le taux d’ouverture et la croissance économique et le modèle de rendements à l’éducation. Dans la première application, les études antérieures ont conclu que les instruments n’étaient pas trop faibles [Dufour et Taamouti (2007)] alors qu’ils le sont fortement dans la seconde [Bound (1995), Doko et Dufour (2009)]. Conformément à nos résultats théoriques, nous trouvons les régions de confiance non bornées pour la covariance dans le cas où les instruments sont assez faibles.